The impacts of investor sentiment on returns and conditional volatility of international stock markets

The impacts of investor sentiment on returns and conditional volatility of international stock... One of the main arguments of behavioral finance is that some properties of asset prices are most probably regarded as deviations from fundamental value and they are generated by the participation of traders who are not fully rational, thus called noise traders. Noise trader theory postulates that sentiment traders have greater impact during high-sentiment periods than during low-sentiment periods, and sentiment traders miscalculate the variance of returns undermining the mean-variance relation. The main objective of this research is to construct a model to evaluate the returns and conditional volatility of various stock market indexes considering the changes in the investor sentiment by measuring the effects of noise trader demand shocks on returns and volatility. EGARCH model is used to determine whether earning shocks have more influence on the conditional volatility in high sentiment periods weakening the mean–variance relation. This paper takes an international approach using weekly market index returns of U.S., Japan, Hong Kong, U.K., France, Germany, and Turkey. Weekly trading volumes of these indexes are regressed against a group of macroeconomic variables and the residuals are used as proxies for investor sentiment and significant evidence is found that there is asymmetric volatility in these market indexes and earning shocks have more influence on conditional volatility when the sentiment is high. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

The impacts of investor sentiment on returns and conditional volatility of international stock markets

Loading next page...
 
/lp/springer_journal/the-impacts-of-investor-sentiment-on-returns-and-conditional-7ugK06zmGG
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-013-9827-3
Publisher site
See Article on Publisher Site

Abstract

One of the main arguments of behavioral finance is that some properties of asset prices are most probably regarded as deviations from fundamental value and they are generated by the participation of traders who are not fully rational, thus called noise traders. Noise trader theory postulates that sentiment traders have greater impact during high-sentiment periods than during low-sentiment periods, and sentiment traders miscalculate the variance of returns undermining the mean-variance relation. The main objective of this research is to construct a model to evaluate the returns and conditional volatility of various stock market indexes considering the changes in the investor sentiment by measuring the effects of noise trader demand shocks on returns and volatility. EGARCH model is used to determine whether earning shocks have more influence on the conditional volatility in high sentiment periods weakening the mean–variance relation. This paper takes an international approach using weekly market index returns of U.S., Japan, Hong Kong, U.K., France, Germany, and Turkey. Weekly trading volumes of these indexes are regressed against a group of macroeconomic variables and the residuals are used as proxies for investor sentiment and significant evidence is found that there is asymmetric volatility in these market indexes and earning shocks have more influence on conditional volatility when the sentiment is high.

Journal

Quality & QuantitySpringer Journals

Published: Feb 20, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off