The impact of phonological rules on Arabic speech recognition

The impact of phonological rules on Arabic speech recognition The pronunciation variation is a well-known phenomenon that has been widely investigated for automatic speech recognition (ASR). The knowledge-based phonological rules are generally used to capture the accurate phonetic realization in order to minimize the mismatch between the ASR dictionary and the actual phonetic representation of the speech signal. For the Arabic ASR, there are a number of studies that employ these rules on Arabic ASR systems; however, little research has been devoted to measure the precise performance of each rule. In this paper, we aim at finding the exact effect of each rule as well as the rules that have no influence. We used the Carnegie Mellon University PocketSphinx speech recognizer with a new “in-house” modern standard Arabic speech corpus that contains 19 h for training and 3.7 h for testing. We evaluated the effect of three famous rules (Shadda, Tanween, and the solar letters). The experimental results do not show clear evidence that using phonological rules for ASR dictionary adaptation can enhance the performance for within-word pronunciation variation. The obtained results might be an indication to rethink or use other ASR performance aspects, such as cross-word pronunciation variation and the optimal phonemes set of the Arabic language. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Speech Technology Springer Journals

The impact of phonological rules on Arabic speech recognition

Loading next page...
 
/lp/springer_journal/the-impact-of-phonological-rules-on-arabic-speech-recognition-HnTz50QjAq
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Signal,Image and Speech Processing; Social Sciences, general; Artificial Intelligence (incl. Robotics)
ISSN
1381-2416
eISSN
1572-8110
D.O.I.
10.1007/s10772-017-9440-2
Publisher site
See Article on Publisher Site

Abstract

The pronunciation variation is a well-known phenomenon that has been widely investigated for automatic speech recognition (ASR). The knowledge-based phonological rules are generally used to capture the accurate phonetic realization in order to minimize the mismatch between the ASR dictionary and the actual phonetic representation of the speech signal. For the Arabic ASR, there are a number of studies that employ these rules on Arabic ASR systems; however, little research has been devoted to measure the precise performance of each rule. In this paper, we aim at finding the exact effect of each rule as well as the rules that have no influence. We used the Carnegie Mellon University PocketSphinx speech recognizer with a new “in-house” modern standard Arabic speech corpus that contains 19 h for training and 3.7 h for testing. We evaluated the effect of three famous rules (Shadda, Tanween, and the solar letters). The experimental results do not show clear evidence that using phonological rules for ASR dictionary adaptation can enhance the performance for within-word pronunciation variation. The obtained results might be an indication to rethink or use other ASR performance aspects, such as cross-word pronunciation variation and the optimal phonemes set of the Arabic language.

Journal

International Journal of Speech TechnologySpringer Journals

Published: Jul 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off