The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens

The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system... The immunity-related GTPases (IRGs) belong to the family of large, interferon-inducible GTPases and constitute a cell-autonomous resistance system essential for the control of vacuolar pathogens like Toxoplasma gondii in mice. Recent results demonstrated that numerous IRG members accumulate collaboratively at the parasitophorous vacuole of invading T. gondii leading to the destruction of the vacuole and the parasite and subsequent necrotic host cell death. Complex regulatory interactions between different IRG proteins are necessary for these processes. Disturbance of this finely balanced system, e.g., by single genetic deficiency for the important negative regulator Irgm1 or the autophagic regulator Atg5, leads to spontaneous activation of the effector IRG proteins when induced by IFNγ. This activation has cytotoxic consequences resulting in a severe lymphopenia, macrophage defects, and failure of the adaptive immune system in Irgm1-deficient mice. However, alternative functions in phagosome maturation and induction of autophagy have been proposed for Irgm1. The IRG system has been studied primarily in mice, but IRG genes are present throughout the mammalian lineage. Interestingly, the number, type, and diversity of genes present differ greatly even between closely related species, probably reflecting intimate host-pathogen coevolution driven by an armed race between the IRG resistance proteins and pathogen virulence factors. IRG proteins are targets for polymorphic T. gondii virulence factors, and genetic variation in the IRG system between different mouse strains correlates with resistance and susceptibility to virulent T. gondii strains. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens

Loading next page...
 
/lp/springer_journal/the-immunity-related-gtpases-in-mammals-a-fast-evolving-cell-Uq0hf2039v
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-010-9293-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial