The Hog1-like MAPK Mpk3 collaborates with Hog1 in response to heat shock and functions in sustaining the biological control potential of a fungal insect pathogen

The Hog1-like MAPK Mpk3 collaborates with Hog1 in response to heat shock and functions in... The mitogen-activated protein kinase (MAPK) Mpk3/MpkC resembles the MAPK Hog1 but does not necessarily function in some filamentous fungi. Here, we compared functions of Mpk3 and Hog1 in Beauveria bassiana, a filamentous fungal insect pathogen, by multi-phenotypic analyses of their single/double deletion mutants. Growth defects of Δmpk3 were moderate on all 14 minimal media with different carbon or nitrogen sources and less severe than those of Δhog1 on most media tested. The double deletion mutant suffered significantly more severe growth defects than those observed in Δmpk3 and Δhog1, suggesting overlapping and collaborative roles of Mpk3 and Hog1 in uptake of six carbon and four nitrogen sources during normal growth. Despite little impact on conidiation capacity, mpk3 deletion slowed down conidial germination as much as hog1 or double deletion. Conidial resistance to UV-B irradiation decreased less in Δmpk3 than in Δhog1 or in the double mutant. The fungal virulence was similarly attenuated for all deletion mutants against Galleria mellonella larvae through normal cuticle infection. Intriguingly, the Δmpk3 mutant displayed null response to high osmolarity and fludioxonil fungicide, to which both Δhog1 and double mutants were hypersensitive and highly resistant, respectively, but it was more sensitive to a 3-h heat shock at 40 °C than Δhog1 during normal incubation. Western blot hybridization demonstrated that Mpk3 could collaborate with Hog1 in response to heat shock rather than to the chemical stresses. Altogether, Mpk3 collaborates with Hog1 only in response to heat shock and functions in sustaining the pest control potential of B. bassiana. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

The Hog1-like MAPK Mpk3 collaborates with Hog1 in response to heat shock and functions in sustaining the biological control potential of a fungal insect pathogen

Loading next page...
 
/lp/springer_journal/the-hog1-like-mapk-mpk3-collaborates-with-hog1-in-response-to-heat-BZXtE0JPdW
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-017-8434-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial