The harmonic probing method for output-only nonlinear mechanical systems

The harmonic probing method for output-only nonlinear mechanical systems Most engineering applications involving vibrating structures are nonlinear in nature and many techniques have been recently investigated to provide a better understanding of such problems. Among the large variety of methods, the harmonic probing has presented useful properties for identification and dynamic analysis of nonlinear systems. The method is conventionally described by the multi-dimensional Fourier transform of the Volterra kernels and it depends on the knowledge of the equations of motion and the respective input and output data. However, this white-box methodology is limited to applications where the input signal is either unknown or even unmeasured. Thus, the present paper is concerned with the development of an extended version of the harmonic probing method to deal with applications where only the outputs are available. The algebraic expressions of the extended Volterra kernels transform and their theoretical properties are provided. The main advantages, novelties and drawbacks of this new approach are discussed and compared with the conventional approach. It is verified that the new kernels can be expressed as a combination of the conventional ones. Numerical tests based on a classical 2DOF Duffing oscillator are carried out and the results reveal the effectiveness and potential of the extended harmonic probing method based on a nonparametric model using new kernels to describe a prediction of vibrating systems in nonlinear regime of motion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

The harmonic probing method for output-only nonlinear mechanical systems

Loading next page...
 
/lp/springer_journal/the-harmonic-probing-method-for-output-only-nonlinear-mechanical-kYFHd2NKlO
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-017-0723-y
Publisher site
See Article on Publisher Site

Abstract

Most engineering applications involving vibrating structures are nonlinear in nature and many techniques have been recently investigated to provide a better understanding of such problems. Among the large variety of methods, the harmonic probing has presented useful properties for identification and dynamic analysis of nonlinear systems. The method is conventionally described by the multi-dimensional Fourier transform of the Volterra kernels and it depends on the knowledge of the equations of motion and the respective input and output data. However, this white-box methodology is limited to applications where the input signal is either unknown or even unmeasured. Thus, the present paper is concerned with the development of an extended version of the harmonic probing method to deal with applications where only the outputs are available. The algebraic expressions of the extended Volterra kernels transform and their theoretical properties are provided. The main advantages, novelties and drawbacks of this new approach are discussed and compared with the conventional approach. It is verified that the new kernels can be expressed as a combination of the conventional ones. Numerical tests based on a classical 2DOF Duffing oscillator are carried out and the results reveal the effectiveness and potential of the extended harmonic probing method based on a nonparametric model using new kernels to describe a prediction of vibrating systems in nonlinear regime of motion.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: Feb 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off