The Genetic Control of Cell Growth and Development in Yeast Saccharomyces cerevisiae: Disturbed Sporulation in Diploids with a Decreased Activity of the Ras/cAMP Signal Transduction Pathway

The Genetic Control of Cell Growth and Development in Yeast Saccharomyces cerevisiae: Disturbed... Seven haploid strains (four with the MATα mating type and three with the MATa mating type) were selected from the Peterhof genetic collection of yeast. Previous phenotypic analysis assigned six of these strains to a physiological group of strains with changed activity of the Ras/cAMP signal transduction pathway. The haploids were crossed, and the resulting 12 diploids showed higher glycogen accumulation, tolerance to heat shock and nitrogen starvation, and sporulation in complete media. Ten of the diploids expressed the hypersporulation phenotype (higher sporulation efficiency). The phenotypic characters of these ten diploids suggested a reduced activity of the Ras/cAMP pathway. All 12 diploids were tested for sporulation and production of two groups of asci (those with one or two spores and those with three or four spores) as dependent on culture conditions (21, 30, or 34°C; standard sporulation medium or a complete medium containing potassium acetate or glycerol in place of glucose). Sporulation proved to depend on temperature and medium composition. The results are collated with the data on yeast phenotypes associated with a lower activity of the Ras/cAMP signal transduction pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The Genetic Control of Cell Growth and Development in Yeast Saccharomyces cerevisiae: Disturbed Sporulation in Diploids with a Decreased Activity of the Ras/cAMP Signal Transduction Pathway

Loading next page...
 
/lp/springer_journal/the-genetic-control-of-cell-growth-and-development-in-yeast-g0IkC5NGXx
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1024441406943
Publisher site
See Article on Publisher Site

Abstract

Seven haploid strains (four with the MATα mating type and three with the MATa mating type) were selected from the Peterhof genetic collection of yeast. Previous phenotypic analysis assigned six of these strains to a physiological group of strains with changed activity of the Ras/cAMP signal transduction pathway. The haploids were crossed, and the resulting 12 diploids showed higher glycogen accumulation, tolerance to heat shock and nitrogen starvation, and sporulation in complete media. Ten of the diploids expressed the hypersporulation phenotype (higher sporulation efficiency). The phenotypic characters of these ten diploids suggested a reduced activity of the Ras/cAMP pathway. All 12 diploids were tested for sporulation and production of two groups of asci (those with one or two spores and those with three or four spores) as dependent on culture conditions (21, 30, or 34°C; standard sporulation medium or a complete medium containing potassium acetate or glycerol in place of glucose). Sporulation proved to depend on temperature and medium composition. The results are collated with the data on yeast phenotypes associated with a lower activity of the Ras/cAMP signal transduction pathway.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial