The GABAergic system in prefrontal cortex and hippocampus modulates context-related extinction learning and renewal in humans

The GABAergic system in prefrontal cortex and hippocampus modulates context-related extinction... Context-related extinction learning and renewal in humans is mediated by hippocampal and prefrontal regions. Renewal is defined as the reoccurrence of an extinguished response if the contexts present during extinction learning and recall differ. Animal studies implicate hippocampal γ-aminobutyric acid (GABA) A receptors in extinction and renewal. However, human studies on GABAergic mechanisms in extinction learning are lacking. In this fMRI study, we therefore investigated the role of the GABAergic system in context-related extinction learning and renewal. Participants treated with the GABA A agonist lorazepam prior to extinction learning were impaired in encoding changed associations during extinction learning, regardless of context, and in retrieving extinction associations during recall. In contrast, retrieval of associations learned during acquisition was largely unaffected, which led to reduced genuine renewal, since acquisition associations were retrieved context-independently. These deficits, which were presumably due to weak encoding of extinction associations, were related to altered BOLD activation in regions relevant for context processing and retrieval, as well as response selection: reduced activation in bilateral PFC and hippocampus during extinction learning and recall, and increased ventromedial/orbitofrontal cortex activation during recall. Our findings indicate that the GABergic system is involved in context-related extinction learning and recall in humans, by modulating hippocampus-based context processing and PFC-based processing of changed associations and subsequent response selection. Brain Imaging and Behavior Springer Journals

The GABAergic system in prefrontal cortex and hippocampus modulates context-related extinction learning and renewal in humans

Loading next page...
Springer US
Copyright © 2016 by The Author(s)
Biomedicine; Neurosciences; Neuroradiology; Neuropsychology; Psychiatry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial