The FT/TFL1 gene family in grapevine

The FT/TFL1 gene family in grapevine The FT/TFL1 gene family encodes proteins with similarity to phosphatidylethanolamine binding proteins which function as flowering promoters and repressors. We show here that the FT/TFL1 gene family in Vitis vinifera is composed of at least five genes. Sequence comparisons with homologous genes identified in other dicot species group them in three major clades, the FT, MFT and TFL1 subfamilies, the latter including three of the Vitis sequences. Gene expression patterns are in agreement with a role of VvFT and VvMFT as flowering promoters; while VvTFL1A, VvTFL1B and VvTFL1C could be associated with vegetative development and maintenance of meristem indetermination. Overexpression of VvFT in transgenic Arabidopsis plants generates early flowering phenotypes similar to those produced by FT supporting a role for this gene in flowering promotion. Overexpression of VvTFL1A does not affect flowering time but the determination of flower meristems, strongly altering inflorescence structure, which is consistent with the biological roles assigned to similar genes in other species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The FT/TFL1 gene family in grapevine

Loading next page...
 
/lp/springer_journal/the-ft-tfl1-gene-family-in-grapevine-Kb6xvc5PoX
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9113-z
Publisher site
See Article on Publisher Site

Abstract

The FT/TFL1 gene family encodes proteins with similarity to phosphatidylethanolamine binding proteins which function as flowering promoters and repressors. We show here that the FT/TFL1 gene family in Vitis vinifera is composed of at least five genes. Sequence comparisons with homologous genes identified in other dicot species group them in three major clades, the FT, MFT and TFL1 subfamilies, the latter including three of the Vitis sequences. Gene expression patterns are in agreement with a role of VvFT and VvMFT as flowering promoters; while VvTFL1A, VvTFL1B and VvTFL1C could be associated with vegetative development and maintenance of meristem indetermination. Overexpression of VvFT in transgenic Arabidopsis plants generates early flowering phenotypes similar to those produced by FT supporting a role for this gene in flowering promotion. Overexpression of VvTFL1A does not affect flowering time but the determination of flower meristems, strongly altering inflorescence structure, which is consistent with the biological roles assigned to similar genes in other species.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 10, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off