Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper we construct a model for the free idempotent generated locally inverse semigroup on a set X. The elements of this model are special vertex-labeled bipartite trees with a pair of distinguished vertices. To describe this model, we need first to introduce a variation of a model for the free pseudosemilattice on a set X presented in Auinger and Oliveira (On the variety of strict pseudosemilattices. Stud Sci Math Hungarica 50:207–241, 2013). A construction of a graph associated with a regular semigroup was presented in Brittenham et al. (Subgroups of free idempotent generated semigroups need not be free. J Algebra 321:3026–3042, 2009) in order to give a first example of a free regular idempotent generated semigroup on a biordered set E with non-free maximal subgroups. If G is the graph associated with the free pseudosemilattice on X, we shall see that the models we present for the free pseudosemilattice on X and for the free idempotent generated locally inverse semigroup on X are closely related with the graph G.
Semigroup Forum – Springer Journals
Published: Jul 12, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.