The Fibroblast Intermediate Conductance K Ca Channel, FIK, as a Prototype for the Cell Growth Regulatory Function of the IK Channel Family

The Fibroblast Intermediate Conductance K Ca Channel, FIK, as a Prototype for the Cell Growth... The fibroblast intermediate conductance, calcium-activated potassium channel (FIK) is proposed here as a functional prototype for other IK channels which to date have undefined physiologic actions. FIK pharmacology in the 10T1/2-MRF4 myogenic fibroblast cell line was determined: to define the relationship of FIK to other IKs; to confirm a physiologic role for FIK; and, thus develop a hypothesis about IK channel family function. Whole cell patch-clamp electrophysiology was used to determine K0.5 values for FIK block by the structurally related peptides charybdotoxin (ChTX) (7 nm) and iberiotoxin (IbTX) (536 nm), and a new unrelated FIK inhibitor, Stichodactyla toxin (StK) (85 nm). Peptide pharmacology for FIK was consistent with that of recently cloned IKs. ChTX and StK inhibited bFGF stimulated 10T1/2-MRF4 cell proliferation with dose-dependencies consistent with their FIK blocking actions. ChTX, StK, and IbTX also evoked MRF4-dependent transcription as measured by muscle acetylcholine receptor channel functional expression; but they did not evoke subsequent multinucleated fiber formation or myosin heavy chain expression, suggesting a role for FIK in early, rather than late, myogenic events. Thus despite structural differences, ChTX, IbTX, and StK have common effects on cell growth and differentiation reflecting their common FIK blocking action. We suggest that a major function of the IK channel family is to regulate cell growth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Fibroblast Intermediate Conductance K Ca Channel, FIK, as a Prototype for the Cell Growth Regulatory Function of the IK Channel Family

Loading next page...
 
/lp/springer_journal/the-fibroblast-intermediate-conductance-k-ca-channel-fik-as-a-ksxuCktG5G
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900601
Publisher site
See Article on Publisher Site

Abstract

The fibroblast intermediate conductance, calcium-activated potassium channel (FIK) is proposed here as a functional prototype for other IK channels which to date have undefined physiologic actions. FIK pharmacology in the 10T1/2-MRF4 myogenic fibroblast cell line was determined: to define the relationship of FIK to other IKs; to confirm a physiologic role for FIK; and, thus develop a hypothesis about IK channel family function. Whole cell patch-clamp electrophysiology was used to determine K0.5 values for FIK block by the structurally related peptides charybdotoxin (ChTX) (7 nm) and iberiotoxin (IbTX) (536 nm), and a new unrelated FIK inhibitor, Stichodactyla toxin (StK) (85 nm). Peptide pharmacology for FIK was consistent with that of recently cloned IKs. ChTX and StK inhibited bFGF stimulated 10T1/2-MRF4 cell proliferation with dose-dependencies consistent with their FIK blocking actions. ChTX, StK, and IbTX also evoked MRF4-dependent transcription as measured by muscle acetylcholine receptor channel functional expression; but they did not evoke subsequent multinucleated fiber formation or myosin heavy chain expression, suggesting a role for FIK in early, rather than late, myogenic events. Thus despite structural differences, ChTX, IbTX, and StK have common effects on cell growth and differentiation reflecting their common FIK blocking action. We suggest that a major function of the IK channel family is to regulate cell growth.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Dec 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off