The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2 production

The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2... We report on the facile synthesis of g-C3N4 based polymers by co-condensing urea with glycine for photocatalytic hydrogen evolution. The as-prepared photocatalysts were then characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis diffuse reflectance spectroscopy, photoluminescence emission spectrometry, electron paramagnetic resonance spectrometry and transmission electron microscopy. Compared with pristine g-C3N4, obtained from direct pyrolysis of urea, the CNU-G5 photocatalyst showed largely enhanced photocatalytic H2 activities about 75 μmol h−1, which is 5 times higher than of the pristine CNU. The enhanced activities are ascribed to the larger specific area surface, strengthened optical absorption and improved electron transport ability. Our work opens up a new pathway for the synthesis graphitic carbon nitride photocatalysts with glycine modification to enhance photocatalytic activities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2 production

Loading next page...
1
 
/lp/springer_journal/the-facile-synthesis-of-graphitic-carbon-nitride-from-amino-acid-and-2ug00VkNJo
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-017-3041-1
Publisher site
See Article on Publisher Site

Abstract

We report on the facile synthesis of g-C3N4 based polymers by co-condensing urea with glycine for photocatalytic hydrogen evolution. The as-prepared photocatalysts were then characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis diffuse reflectance spectroscopy, photoluminescence emission spectrometry, electron paramagnetic resonance spectrometry and transmission electron microscopy. Compared with pristine g-C3N4, obtained from direct pyrolysis of urea, the CNU-G5 photocatalyst showed largely enhanced photocatalytic H2 activities about 75 μmol h−1, which is 5 times higher than of the pristine CNU. The enhanced activities are ascribed to the larger specific area surface, strengthened optical absorption and improved electron transport ability. Our work opens up a new pathway for the synthesis graphitic carbon nitride photocatalysts with glycine modification to enhance photocatalytic activities.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off