The extracellular part of glycoprotein E of bovine herpesvirus 1 is sufficient for complex formation with glycoprotein I but not for cell-to-cell spread

The extracellular part of glycoprotein E of bovine herpesvirus 1 is sufficient for complex... Glycoproteins gE and gI of bovine herpesvirus 1 (BHV-1) are type I transmembrane proteins that can form a complex that is involved in cell-to-cell spread mechanisms. The extracellular domains of both proteins have cysteine-rich regions that are also found in the homologous proteins of other alphaherpesviruses. The extracellular domain of gE has two conserved cysteine-rich regions: C1 and C2. The other conserved regions in gE are located between C2 and transmembrane region and in the cytoplasmic domain of gE. We studied the complex formation between gE and gI using a series of truncated gE proteins and a full length form and a secreted form of gI. All proteins were expressed in recombinant baculoviruses. To analyse the complex formation between these polypeptides we used monoclonal antibodies (MAbs 67 and 75) that specifically react with the gE/gI complex and not with separately expressed glycoproteins gE and gI alone. This analysis showed that the BHV-1 gE/gI complex can be formed in insect cells after a co-infection with baculoviruses expressing gE and gI in their full length form. When secreted forms of gE and gI were expressed after co-infection, the gE/gI complex was still formed and could also be detected in the tissue culture medium. This gE/gI complex was also formed after mixing the tissue culture media of insect cells expressing the secreted form or gE or gI separately. The smallest part of gE that still formed a complex is encoded by the first 246 residues of gE. This extracellular domain contains only the C1 region, showing that the C2 region is not essential for gE/gI complex formation. Shorter forms of gE encoding the C1 region did not form a detectable complex. We also found that the formation of gE/gI complex is not sufficient for normal cell-to-cell spread of BHV-1. A recombinant BHV-1 gE TM-virus, expressing a truncated glycoprotein E from which the transmembrane and cytoplasmic domain were removed, forms plaques as small as a gE null mutant. Archives of Virology Springer Journals

The extracellular part of glycoprotein E of bovine herpesvirus 1 is sufficient for complex formation with glycoprotein I but not for cell-to-cell spread

Loading next page...
Copyright © 2000 by Springer-Verlag/Wien
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial