The excitonic qubit on a star graph: dephasing-limited coherent motion

The excitonic qubit on a star graph: dephasing-limited coherent motion A phenomenological model is used for describing how a fluctuating bath modifies the way an exciton promotes quantum state transfer on a star graph. A markovian generalized master equation is first established. Then, it is solved exactly for studying specific elements of the exciton reduced density matrix. These elements, called coherences, characterize the ability of the exciton to develop qubit states that are superimpositions involving the vacuum and the local one-exciton states. Although dephasing-limited coherent motion is clearly evidenced, it is shown that both the decoherence and the information transfer are very sensitive to the number of branches that form the star. The larger the branch number is, the slower is the decoherence and the better is the efficiency of the transfer. Quantum Information Processing Springer Journals

The excitonic qubit on a star graph: dephasing-limited coherent motion

Loading next page...
Springer US
Copyright © 2014 by Springer Science+Business Media New York
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial