The exact distance to destination in undirected world

The exact distance to destination in undirected world Shortest distance queries are essential not only in graph analysis and graph mining tasks but also in database applications, when a large graph needs to be dealt with. Such shortest distance queries are frequently issued by end-users or requested as a subroutine in real applications. For intensive queries on large graphs, it is impractical to compute shortest distances on-line from scratch, and impractical to materialize all-pairs shortest distances. In the literature, 2-hop distance labeling is proposed to index the all-pairs shortest distances. It assigns distance labels to vertices in a large graph in a pre-computing step off-line and then answers shortest distance queries on-line by making use of such distance labels, which avoids exhaustively traversing the large graph when answering queries. However, the existing algorithms to generate 2-hop distance labels are not scalable to large graphs. Finding an optimal 2-hop distance labeling is NP-hard, and heuristic algorithms may generate large size distance labels while still needing to pre-compute all-pairs shortest paths. In this paper, we propose a multi-hop distance labeling approach, which generates a subset of the 2-hop distance labels as index off-line. We can compute the multi-hop distance labels efficiently by avoiding pre-computing all-pairs shortest paths. In addition, our multi-hop distance labeling is small in size to be stored. To answer a shortest distance query between two vertices, we first generate the query-specific small set of 2-hop distance labels for the two vertices based on our multi-hop distance labels stored and compute the shortest distance between the two vertices based on the 2-hop distance labels generated on-line. We conducted extensive performance studies on large real graphs and confirmed the efficiency of our multi-hop distance labeling scheme. The VLDB Journal Springer Journals

The exact distance to destination in undirected world

Loading next page...
Copyright © 2012 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial