The Evolution of Range Sizes in Mammals and Squamates: Heritability and Differential Evolutionary Rates for Low- and High-Latitude Limits

The Evolution of Range Sizes in Mammals and Squamates: Heritability and Differential Evolutionary... Species geographical ranges are at the core of many areas in evolutionary biology, yet empirical studies on the evolution of geographical ranges have been limited. Here, we integrate information on the phylogenetic relationships and geographical distribution of 3097 species of mammal (Artiodactyla, Carnivora, Chiroptera, Marsupialia, and Primates) and squamate (Anguimorpha, Gekkota, Iguania, Lacertoidea, Scincoidea, and Serpentes) to assess the degree of evolutionary “heritability” (i.e., phylogenetic autocorrelation) in range sizes and the extent to which range limits at higher and lower latitudes share similar evolutionary rates. Phylogenetic autocorrelation was highly variable among clades in the case of range size, but invariably high for range latitudinal centroid and range limits. Moreover, rates of evolution of high-latitude limits were 1.6–4 times faster than low-latitude limits. These results are consistent with previous experimental studies showing that heat tolerance is conserved across lineages, whereas tolerance to cold temperatures is more labile. The distinct evolutionary rates of low- and high-latitude limits has important implications for our understanding of the evolution of geographical ranges, as well as to understand how they could be affected by predicted anthropogenic climate changes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolutionary Biology Springer Journals

The Evolution of Range Sizes in Mammals and Squamates: Heritability and Differential Evolutionary Rates for Low- and High-Latitude Limits

Loading next page...
 
/lp/springer_journal/the-evolution-of-range-sizes-in-mammals-and-squamates-heritability-and-1uEqzsJSx0
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Evolutionary Biology; Ecology; Developmental Biology; Human Genetics; Animal Genetics and Genomics
ISSN
0071-3260
eISSN
1934-2845
D.O.I.
10.1007/s11692-017-9412-0
Publisher site
See Article on Publisher Site

Abstract

Species geographical ranges are at the core of many areas in evolutionary biology, yet empirical studies on the evolution of geographical ranges have been limited. Here, we integrate information on the phylogenetic relationships and geographical distribution of 3097 species of mammal (Artiodactyla, Carnivora, Chiroptera, Marsupialia, and Primates) and squamate (Anguimorpha, Gekkota, Iguania, Lacertoidea, Scincoidea, and Serpentes) to assess the degree of evolutionary “heritability” (i.e., phylogenetic autocorrelation) in range sizes and the extent to which range limits at higher and lower latitudes share similar evolutionary rates. Phylogenetic autocorrelation was highly variable among clades in the case of range size, but invariably high for range latitudinal centroid and range limits. Moreover, rates of evolution of high-latitude limits were 1.6–4 times faster than low-latitude limits. These results are consistent with previous experimental studies showing that heat tolerance is conserved across lineages, whereas tolerance to cold temperatures is more labile. The distinct evolutionary rates of low- and high-latitude limits has important implications for our understanding of the evolution of geographical ranges, as well as to understand how they could be affected by predicted anthropogenic climate changes.

Journal

Evolutionary BiologySpringer Journals

Published: Mar 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off