The Evolution of Fatty Acid Desaturases and Cytochrome b5 in Eukaryotes

The Evolution of Fatty Acid Desaturases and Cytochrome b5 in Eukaryotes Desaturases that introduce double bonds into the fatty acids are involved in the adaptation of membrane fluidity to changes in the environment. Besides, polyunsaturated fatty acids (PUFAs) are increasingly recognized as important pharmaceutical and nutraceutical compounds. To successfully engineer organisms with increased stress tolerance or the ability to synthesize valuable PUFAs, detailed knowledge about the complexity of the desaturase family as well as understanding of the coevolution of desaturases and their cytochrome b5 electron donors is needed. We have constructed phylogenies of several hundred desaturase sequences from animals, plants, fungi and bacteria and of the cytochrome b5 domains that are fused to some of these enzymes. The analysis demonstrates the existence of three major desaturase acyl-CoA groups that share few similarities. Our results indicate that the fusion of Δ6-desaturase-like enzymes with their cytochrome b5 electron donor was a single event that took place in the common ancestor of all eukaryotes. We also propose the Δ6-desaturase-like enzymes as the most probable donor of the cytochrome b5 domain found in fungal Δ9-desaturases and argue that the recombination most likely happened soon after the separation of the animal and fungal ancestors. These findings answer some of the previously unresolved questions and contribute to the quickly expanding field of research on desaturases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Evolution of Fatty Acid Desaturases and Cytochrome b5 in Eukaryotes

Loading next page...
 
/lp/springer_journal/the-evolution-of-fatty-acid-desaturases-and-cytochrome-b5-in-J7NB3zXH1Q
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-010-9225-x
Publisher site
See Article on Publisher Site

Abstract

Desaturases that introduce double bonds into the fatty acids are involved in the adaptation of membrane fluidity to changes in the environment. Besides, polyunsaturated fatty acids (PUFAs) are increasingly recognized as important pharmaceutical and nutraceutical compounds. To successfully engineer organisms with increased stress tolerance or the ability to synthesize valuable PUFAs, detailed knowledge about the complexity of the desaturase family as well as understanding of the coevolution of desaturases and their cytochrome b5 electron donors is needed. We have constructed phylogenies of several hundred desaturase sequences from animals, plants, fungi and bacteria and of the cytochrome b5 domains that are fused to some of these enzymes. The analysis demonstrates the existence of three major desaturase acyl-CoA groups that share few similarities. Our results indicate that the fusion of Δ6-desaturase-like enzymes with their cytochrome b5 electron donor was a single event that took place in the common ancestor of all eukaryotes. We also propose the Δ6-desaturase-like enzymes as the most probable donor of the cytochrome b5 domain found in fungal Δ9-desaturases and argue that the recombination most likely happened soon after the separation of the animal and fungal ancestors. These findings answer some of the previously unresolved questions and contribute to the quickly expanding field of research on desaturases.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 10, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off