The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: Possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants

The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.)... From a pathogen-inoculated hot pepper (Capsicum annuumL. cv. Pukang) leaf EST, we identified a cDNA clone, pCaERFLP1, encoding a putative transcription factor that contains a single ERF/AP2 DNA binding domain. CaERFLP1 was most closely related to tomato LeERF2 (73%), both of which belong to the novel ERF class IV typified by the N-terminal MCGGAIL signature sequence, while it had a limited sequence identity (25–30%) with Arabidopsis AtERFs and tobacco NtERFs. Quantitative gel retardation assays revealed that bacterially expressed full-length CaERFLP1 was able to form a specific complex with both the GCC box and DRE/CRT motif, with its binding affinity for GCC being stronger than for DRE/CRT. When fused to the GAL4 DNA binding domain, the N-terminal CaERFLP11–37 and C-terminal CaERFLP1198–264 mutant polypeptides could function individually as transactivators in yeast. This suggests that two separate domains of CaERFLP1 may play distinct roles in transcription activation. In particle co-bombardment experiments, CaERFLP1 activated the transcription of reporter genes containing the 4X[GCC] element in tobacco cells. In hot pepper plants, the steady-state level of CaERFLP1mRNA was markedly induced by multiple environmental factors, such as pathogen infection, ethylene, mechanical wounding and high salinity. Furthermore, ectopic expression of CaERFLP1 in transgenic tobacco plants resulted in partially improved tolerance against the bacterial pathogen Pseudomonas syringae and salt stress (100 mM NaCl). Consistently, various defense-related genes, including GCC box-containing PR genes and the DRE/CRT-containing LTI45 (ERD10) gene, were constitutively expressed in 35S::CaERFLP1 tobacco plants. Thus, it appears that CaERFLP1 is functional in tobacco cells, where it induces the transactivation of some GCC- and DRE/CRT-genes to trigger a subset of stress response. Here, the possible biological role(s) of CaERFLP1 is discussed, especially with regard to the possibility that CaERFLP1 has multiple functions in the regulation of GCC- and DRE/CRT-mediated gene expression in hot pepper plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: Possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants

Loading next page...
 
/lp/springer_journal/the-ethylene-responsive-factor-like-protein-1-caerflp1-of-hot-pepper-iVixuYxISp
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-0417-6
Publisher site
See Article on Publisher Site

Abstract

From a pathogen-inoculated hot pepper (Capsicum annuumL. cv. Pukang) leaf EST, we identified a cDNA clone, pCaERFLP1, encoding a putative transcription factor that contains a single ERF/AP2 DNA binding domain. CaERFLP1 was most closely related to tomato LeERF2 (73%), both of which belong to the novel ERF class IV typified by the N-terminal MCGGAIL signature sequence, while it had a limited sequence identity (25–30%) with Arabidopsis AtERFs and tobacco NtERFs. Quantitative gel retardation assays revealed that bacterially expressed full-length CaERFLP1 was able to form a specific complex with both the GCC box and DRE/CRT motif, with its binding affinity for GCC being stronger than for DRE/CRT. When fused to the GAL4 DNA binding domain, the N-terminal CaERFLP11–37 and C-terminal CaERFLP1198–264 mutant polypeptides could function individually as transactivators in yeast. This suggests that two separate domains of CaERFLP1 may play distinct roles in transcription activation. In particle co-bombardment experiments, CaERFLP1 activated the transcription of reporter genes containing the 4X[GCC] element in tobacco cells. In hot pepper plants, the steady-state level of CaERFLP1mRNA was markedly induced by multiple environmental factors, such as pathogen infection, ethylene, mechanical wounding and high salinity. Furthermore, ectopic expression of CaERFLP1 in transgenic tobacco plants resulted in partially improved tolerance against the bacterial pathogen Pseudomonas syringae and salt stress (100 mM NaCl). Consistently, various defense-related genes, including GCC box-containing PR genes and the DRE/CRT-containing LTI45 (ERD10) gene, were constitutively expressed in 35S::CaERFLP1 tobacco plants. Thus, it appears that CaERFLP1 is functional in tobacco cells, where it induces the transactivation of some GCC- and DRE/CRT-genes to trigger a subset of stress response. Here, the possible biological role(s) of CaERFLP1 is discussed, especially with regard to the possibility that CaERFLP1 has multiple functions in the regulation of GCC- and DRE/CRT-mediated gene expression in hot pepper plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off