The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton

The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by... Cotton fiber elongation, largely achieved by cell wall loosening, is an important stage during cotton fiber development. In this present research, a fiber preferential cDNA encoding a pectate lyase (PEL) which could exclusively degrade the de-esterified pectin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. Subsequently, the corresponding PEL genes were isolated from four different cotton species and characterized. In vitro enzyme assays indicated that GhPEL really exhibited cleavage-activity against de-esterified pectin. The temporal-spatial expression analyses revealed that the GhPEL gene was preferentially expressed in fibers at 10 days-post anthesis (DPA). Antisense GhPEL transgenic cotton plants were generated by Agrobacterium-mediated transformation. Six homozygous lines, each with one or two copies of the transgene inserted as determined by southern blot analysis of the NPTII gene, were selected for further functional analysis. The GhPEL expression during fiber elongation in these transgenic lines was significantly suppressed in various degrees. Furthermore, the reduction of GhPEL enzymatic activity by decreasing GhPEL transcripts severely affected the degradation of de-esterified pectin in primary cell walls of transgenic cotton fibers, which consequently blocked cell wall loosening in early fiber development. Ultimately, the fiber elongation of all these transgenic lines was repressed. These results suggested that GhPEL may play an important role in the process of normal fiber elongation in cotton. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton

Loading next page...
 
/lp/springer_journal/the-essential-role-of-ghpel-gene-encoding-a-pectate-lyase-in-cell-wall-V0o0cHDBmT
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9578-7
Publisher site
See Article on Publisher Site

Abstract

Cotton fiber elongation, largely achieved by cell wall loosening, is an important stage during cotton fiber development. In this present research, a fiber preferential cDNA encoding a pectate lyase (PEL) which could exclusively degrade the de-esterified pectin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. Subsequently, the corresponding PEL genes were isolated from four different cotton species and characterized. In vitro enzyme assays indicated that GhPEL really exhibited cleavage-activity against de-esterified pectin. The temporal-spatial expression analyses revealed that the GhPEL gene was preferentially expressed in fibers at 10 days-post anthesis (DPA). Antisense GhPEL transgenic cotton plants were generated by Agrobacterium-mediated transformation. Six homozygous lines, each with one or two copies of the transgene inserted as determined by southern blot analysis of the NPTII gene, were selected for further functional analysis. The GhPEL expression during fiber elongation in these transgenic lines was significantly suppressed in various degrees. Furthermore, the reduction of GhPEL enzymatic activity by decreasing GhPEL transcripts severely affected the degradation of de-esterified pectin in primary cell walls of transgenic cotton fibers, which consequently blocked cell wall loosening in early fiber development. Ultimately, the fiber elongation of all these transgenic lines was repressed. These results suggested that GhPEL may play an important role in the process of normal fiber elongation in cotton.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 22, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off