The Ephx1 d allele encoding an Arg338Cys substitution is associated with heat lability

The Ephx1 d allele encoding an Arg338Cys substitution is associated with heat lability Heat lability of the mouse hepatic microsomal epoxide hydrolase 1 enzyme-specific activity (EC 3.3.2.3) is greater for the A/J than the C57BL/6J strain. Analysis of the microsomal epoxide hydrolase 1 cDNA coding sequences shows the C57BL/6J and A/J strains to differ in a single base, a C to T transition at position 1012 from the ATG. This change would predict a substitution of an Arg for a Cys at codon 338. Lyman et al. (J. Biol. Chem 255:8650, 1980) studied 26 inbred mouse strains and assigned each strain to one of two groups based upon functional criteria that included heat lability and pH optima for microsomal epoxide hydrolase 1. The heat-labile strains including A/J were denoted with the Ephx1 d allele, whereas C57BL/6J and other members of the heat-stable strains were denoted with the Ephx1 b allele. We examined those same inbred mouse strains and found complete concordance between the assignment of microsomal epoxide hydrolase 1 allele superscript ``b'' or ``d'' and the wild-type and C1012T polymorphism respectively (Fisher's Exact Test, two-sided p < 0.0001). These data suggest that mouse hepatic microsomal epoxide hydrolase 1 heat lability is associated with the presence of a Cys at residue 338. Genomic samples from the available AXB and BXA recombinant inbred strains were allelotyped for the SNP identified in the Ephx1 gene that distinguishes the A/J and C57BL/6J parental strains and used to map Ephx1 to Chromosome (Chr) 1 at approximately 98.5cM (LOD = 10.0). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

The Ephx1 d allele encoding an Arg338Cys substitution is associated with heat lability

Loading next page...
 
/lp/springer_journal/the-ephx1-d-allele-encoding-an-arg338cys-substitution-is-associated-YkU4RoN2Ta
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010169
Publisher site
See Article on Publisher Site

Abstract

Heat lability of the mouse hepatic microsomal epoxide hydrolase 1 enzyme-specific activity (EC 3.3.2.3) is greater for the A/J than the C57BL/6J strain. Analysis of the microsomal epoxide hydrolase 1 cDNA coding sequences shows the C57BL/6J and A/J strains to differ in a single base, a C to T transition at position 1012 from the ATG. This change would predict a substitution of an Arg for a Cys at codon 338. Lyman et al. (J. Biol. Chem 255:8650, 1980) studied 26 inbred mouse strains and assigned each strain to one of two groups based upon functional criteria that included heat lability and pH optima for microsomal epoxide hydrolase 1. The heat-labile strains including A/J were denoted with the Ephx1 d allele, whereas C57BL/6J and other members of the heat-stable strains were denoted with the Ephx1 b allele. We examined those same inbred mouse strains and found complete concordance between the assignment of microsomal epoxide hydrolase 1 allele superscript ``b'' or ``d'' and the wild-type and C1012T polymorphism respectively (Fisher's Exact Test, two-sided p < 0.0001). These data suggest that mouse hepatic microsomal epoxide hydrolase 1 heat lability is associated with the presence of a Cys at residue 338. Genomic samples from the available AXB and BXA recombinant inbred strains were allelotyped for the SNP identified in the Ephx1 gene that distinguishes the A/J and C57BL/6J parental strains and used to map Ephx1 to Chromosome (Chr) 1 at approximately 98.5cM (LOD = 10.0).

Journal

Mammalian GenomeSpringer Journals

Published: Feb 27, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off