The Energy Budget of Coral Polyps

The Energy Budget of Coral Polyps We analyzed the recent data on the distribution of the photosynthetic energy of zooxanthellae in corals and the models of interactions between the plant and animal cells in the course of matter and energy exchange developed based on this information. The models of energy exchange of animals symbiotic with zooxanthellae are characterized by the following features: (1) A flow chart of carbon or energy fluxes is the main form of representation of the energetics in native symbiotic organisms. (2) The relations between the symbionts are relatively adequately revealed and correspond to the modern notions; however, the intensities of the energy fluxes ascribed to these relations are dependent on the experimental and design methods used by the authors. (3) The inputs into the energy budget consist of the autotrophic production of zooxanthellae and the heterotrophy of the polyp. The energy expenditures comprise excretion, respiration, development, and growth of the animal and algae. (4) The differences between the species, genera, and phyla of animals that develop symbiotic relations with zooxanthellae are confined to the absolute values of energy fluxes in the organism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Marine Biology Springer Journals

The Energy Budget of Coral Polyps

Loading next page...
 
/lp/springer_journal/the-energy-budget-of-coral-polyps-zNScYi8lYc
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2000 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1063-0740
eISSN
1608-3377
D.O.I.
10.1023/A:1009497303413
Publisher site
See Article on Publisher Site

Abstract

We analyzed the recent data on the distribution of the photosynthetic energy of zooxanthellae in corals and the models of interactions between the plant and animal cells in the course of matter and energy exchange developed based on this information. The models of energy exchange of animals symbiotic with zooxanthellae are characterized by the following features: (1) A flow chart of carbon or energy fluxes is the main form of representation of the energetics in native symbiotic organisms. (2) The relations between the symbionts are relatively adequately revealed and correspond to the modern notions; however, the intensities of the energy fluxes ascribed to these relations are dependent on the experimental and design methods used by the authors. (3) The inputs into the energy budget consist of the autotrophic production of zooxanthellae and the heterotrophy of the polyp. The energy expenditures comprise excretion, respiration, development, and growth of the animal and algae. (4) The differences between the species, genera, and phyla of animals that develop symbiotic relations with zooxanthellae are confined to the absolute values of energy fluxes in the organism.

Journal

Russian Journal of Marine BiologySpringer Journals

Published: Oct 8, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off