The endoplasmic reticulum stress induced by highly expressed OsrAAT reduces seed size via pre-mature programmed cell death

The endoplasmic reticulum stress induced by highly expressed OsrAAT reduces seed size via... The high accumulation of a recombinant protein in rice endosperm causes endoplasmic reticulum (ER) stress and in turn dramatically affects endogenous storage protein expression, protein body morphology and seed phenotype. To elucidate the molecular mechanisms underlying these changes in transgenic rice seeds, we analyzed the expression profiles of endogenous storage proteins, ER stress-related and programmed cell death (PCD)-related genes in transgenic lines with different levels of Oryza sativa recombinant alpha antitrypsin (OsrAAT) expression. The results indicated that OsrAAT expression induced the ER stress and that the strength of the ER stress was dependent on OsrAAT expression levels. It in turn induced upregulation of the expression of the ER stress response genes and downregulation of the expression of the endogenous storage protein genes in rice endosperm. Further experiments showed that the ER stress response upregulated the expression of PCD-related genes to disturb the rice endosperm development and induced pre-mature PCD. As consequence, it resulted in decrease of grain weight and size. The mechanisms for the detriment seed phenotype in transgenic lines with high accumulation of the recombinant protein were elucidated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The endoplasmic reticulum stress induced by highly expressed OsrAAT reduces seed size via pre-mature programmed cell death

Loading next page...
 
/lp/springer_journal/the-endoplasmic-reticulum-stress-induced-by-highly-expressed-osraat-DmqcjKU7j2
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0056-x
Publisher site
See Article on Publisher Site

Abstract

The high accumulation of a recombinant protein in rice endosperm causes endoplasmic reticulum (ER) stress and in turn dramatically affects endogenous storage protein expression, protein body morphology and seed phenotype. To elucidate the molecular mechanisms underlying these changes in transgenic rice seeds, we analyzed the expression profiles of endogenous storage proteins, ER stress-related and programmed cell death (PCD)-related genes in transgenic lines with different levels of Oryza sativa recombinant alpha antitrypsin (OsrAAT) expression. The results indicated that OsrAAT expression induced the ER stress and that the strength of the ER stress was dependent on OsrAAT expression levels. It in turn induced upregulation of the expression of the ER stress response genes and downregulation of the expression of the endogenous storage protein genes in rice endosperm. Further experiments showed that the ER stress response upregulated the expression of PCD-related genes to disturb the rice endosperm development and induced pre-mature PCD. As consequence, it resulted in decrease of grain weight and size. The mechanisms for the detriment seed phenotype in transgenic lines with high accumulation of the recombinant protein were elucidated.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 8, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off