The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed barley plants

The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed... Following the production of transgenic plants, the selectable marker gene(s) used in the process are redundant, and their retention may be undesirable. They can be removed by exploiting segregation among the progeny of co-transformants carrying both the selectable marker gene and the effector transgene. Here we show that the doubled haploid technology widely used in conventional barley breeding programmes represents a useful means of fixing a transgene, while simultaneously removing the unwanted selectable marker gene. Primary barley co-transformants involving hpt::gfp (the selectable marker) and gus (a model transgene of interest) were produced via Agrobacterium-mediated gene transfer to immature embryos using two respective T-DNAs. These plants were then subjected to embryogenic pollen culture to separate independently integrated transgenes in doubled haploid progeny. A comparison between 14 combinations, involving two Agrobacterium strains carrying various plasmids, revealed that the highest rate of independent co-transformation was achieved when a single Agrobacterium clone carried two binary vectors. Using this principle along with Agrobacterium strain LBA4404, selectable marker-free, gus homozygous lines were eventually obtained from 1.5 per 100 immature embryos inoculated. Compared to the segregation of uncoupled T-DNAs in conventionally produced progeny, the incorporation of haploid technology improves the time and resource efficiency of producing true-breeding, selectable marker-free transgenic barley. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed barley plants

Loading next page...
 
/lp/springer_journal/the-elimination-of-a-selectable-marker-gene-in-the-doubled-haploid-7uQwywPggD
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by The Author(s)
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-012-9988-9
Publisher site
See Article on Publisher Site

Abstract

Following the production of transgenic plants, the selectable marker gene(s) used in the process are redundant, and their retention may be undesirable. They can be removed by exploiting segregation among the progeny of co-transformants carrying both the selectable marker gene and the effector transgene. Here we show that the doubled haploid technology widely used in conventional barley breeding programmes represents a useful means of fixing a transgene, while simultaneously removing the unwanted selectable marker gene. Primary barley co-transformants involving hpt::gfp (the selectable marker) and gus (a model transgene of interest) were produced via Agrobacterium-mediated gene transfer to immature embryos using two respective T-DNAs. These plants were then subjected to embryogenic pollen culture to separate independently integrated transgenes in doubled haploid progeny. A comparison between 14 combinations, involving two Agrobacterium strains carrying various plasmids, revealed that the highest rate of independent co-transformation was achieved when a single Agrobacterium clone carried two binary vectors. Using this principle along with Agrobacterium strain LBA4404, selectable marker-free, gus homozygous lines were eventually obtained from 1.5 per 100 immature embryos inoculated. Compared to the segregation of uncoupled T-DNAs in conventionally produced progeny, the incorporation of haploid technology improves the time and resource efficiency of producing true-breeding, selectable marker-free transgenic barley.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 21, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off