The Electroporation as a Tool for Studying the Role of Plasma Membrane in the Mechanism of Cytotoxicity of Bisphosphonates and Menadione

The Electroporation as a Tool for Studying the Role of Plasma Membrane in the Mechanism of... In this study, the role of the cell plasma membrane as a barrier in the mechanism of the cytotoxicity of nitrogen-containing bisphosphonates and menadione was studied, and the possibility of increasing the efficiency of bisphosphonates and menadione (vitamin K3) as chemotherapeutic agents by permeabilizing the cell plasma membrane has been investigated in vitro. The plasma membrane barrier was reduced by electropermeabilization with the pulse of strong electric field. Two membrane-impermeant bisphosphonates with different hydrophilicities were chosen as study objects: ibandronate and pamidronate. For the comparison, an amphiphilic vitamin K3, which is able to cross the cell membrane, was studied as well. The impact of nitrogen-containing bisphosphonates and vitamin K3 on MH-22A cells viability was evaluated for the case of long (9 days) and short (20 min) exposure. When cells were cultured in the medium with vitamin K3 for 9–10 days, it exhibited toxicity of 50 % over the control at 6.2 µM for mouse hepatoma MH-22A cells. Ibandronate and pamidronate were capable of reducing drastically the cell viability only in the case of long 9-days incubation and at high concentrations (~20 µM for pamidronate and over 100 µM for ibandronate). Single, square-wave electric pulse with the duration of 100 µs and the field strength of 2 kV/cm was used to electroporate mouse hepatoma MH-22A cells in vitro. The results obtained here showed that the combination of the exposure of cells to membrane-impermeable bisphosphonates pamidronate and ibandronate with electropermeabilization of the cell plasma membrane did not increase their cytotoxicity. In the case of membrane-permeable vitamin K3, cell electropermeabilization did increase vitamin K3 killing efficiency. However, this increase was not substantial, within the range of 20–30 % depending on the duration of the exposure. Electropermeabilization improved cytotoxic effect of vitamin K3 but not of pamidronate and ibandronate. The Journal of Membrane Biology Springer Journals

The Electroporation as a Tool for Studying the Role of Plasma Membrane in the Mechanism of Cytotoxicity of Bisphosphonates and Menadione

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial