The Efficiency of the Ability of Isolation Piles to Control the Deformation of Tunnels Adjacent to Excavations

The Efficiency of the Ability of Isolation Piles to Control the Deformation of Tunnels Adjacent... There is a lack of research on the mechanisms by which isolation piles affect displacements in deep soil layers and the use of isolation piles to control the displacement and deformation of the existing tunnels adjacent to deep excavations. This paper examines a large, deep excavation project in which isolation piles were used to protect a nearby existing tunnel. A finite-element model that considers the small-strain characteristics of the soil was used to simulate this project. After the numerical model is verified, it is used in a parametric analysis of the mechanisms by which isolation piles control the displacement of deep soil layers and the deformation of tunnels near excavations. The results show that isolation piles have both a barrier effect and a traction effect on the surrounding soil and adjacent tunnels. When the traction effect is larger, isolation piles can exacerbate the horizontal displacement of the soil and tunnel within a certain depth range and actually increase tunnel deformation. Burying the isolation piles reduces this traction effect and improves their ability to isolate tunnels from displacement. All else being equal, isolation piles more efficiently control deformation if they are near the tunnel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Civil Engineering Springer Journals

The Efficiency of the Ability of Isolation Piles to Control the Deformation of Tunnels Adjacent to Excavations

Loading next page...
 
/lp/springer_journal/the-efficiency-of-the-ability-of-isolation-piles-to-control-the-vbjhT9Zt0S
Publisher
Springer Journals
Copyright
Copyright © 2018 by Iran University of Science and Technology
Subject
Engineering; Civil Engineering
ISSN
1735-0522
eISSN
2383-3874
D.O.I.
10.1007/s40999-018-0335-7
Publisher site
See Article on Publisher Site

Abstract

There is a lack of research on the mechanisms by which isolation piles affect displacements in deep soil layers and the use of isolation piles to control the displacement and deformation of the existing tunnels adjacent to deep excavations. This paper examines a large, deep excavation project in which isolation piles were used to protect a nearby existing tunnel. A finite-element model that considers the small-strain characteristics of the soil was used to simulate this project. After the numerical model is verified, it is used in a parametric analysis of the mechanisms by which isolation piles control the displacement of deep soil layers and the deformation of tunnels near excavations. The results show that isolation piles have both a barrier effect and a traction effect on the surrounding soil and adjacent tunnels. When the traction effect is larger, isolation piles can exacerbate the horizontal displacement of the soil and tunnel within a certain depth range and actually increase tunnel deformation. Burying the isolation piles reduces this traction effect and improves their ability to isolate tunnels from displacement. All else being equal, isolation piles more efficiently control deformation if they are near the tunnel.

Journal

International Journal of Civil EngineeringSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off