The effects of variable practice on locomotor adaptation to a novel asymmetric gait

The effects of variable practice on locomotor adaptation to a novel asymmetric gait Very little is known about the effects of specific practice on motor learning of predictive balance control during novel bipedal gait. This information could provide an insight into how the direction and magnitude of predictive errors during acquisition of a novel gait task influence transfer of balance control, as well as yield a practice protocol for the restoration of balance for those with locomotor impairments. This study examined the effect of a variable practice paradigm on transfer of a novel asymmetric gait pattern in able-bodied individuals. Using a split-belt treadmill, one limb was driven at a constant velocity (constant limb) and the other underwent specific changes in velocity (variable limb) during practice according to one of three prescribed practice paradigms: serial, where the variable limb velocity increased linearly; random blocked, where variable limb underwent random belt velocity changes every 20 strides; and random practice, where the variable limb underwent random step-to-step changes in velocity. Random practice showed the highest balance control variability during acquisition compared to serial and random blocked practice which demonstrated the best transfer of balance control on one transfer test. Both random and random blocked practices showed significantly less balance control variability during a second transfer test compared to serial practice. These results indicate that random blocked practice may be best for generalizability of balance control while learning a novel gait, perhaps, indicating that individuals who underwent this practice paradigm were able to find the most optimal balance control solution during practice. Experimental Brain Research Springer Journals

The effects of variable practice on locomotor adaptation to a novel asymmetric gait

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag GmbH Germany
Biomedicine; Neurosciences; Neurology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial