The effects of resolution and noise on kinematic features of fine-scale turbulence

The effects of resolution and noise on kinematic features of fine-scale turbulence The effect of spatial resolution and experimental noise on the kinematic fine-scale features in shear flow turbulence is investigated by means of comparing numerical and experimental data. A direct numerical simulation (DNS) of a nominally two-dimensional planar mixing layer is mean filtered onto a uniform Cartesian grid at four different, progressively coarser, spatial resolutions. Spatial gradients are then calculated using a simple second-order scheme that is commonly used in experimental studies in order to make direct comparisons between the numerical and previously obtained experimental data. As expected, consistent with other studies, it is found that reduction of spatial resolution greatly reduces the frequency of high magnitude velocity gradients and thereby reduces the intermittency of the scalar analogues to strain (dissipation) and rotation (enstrophy). There is also an increase in the distances over which dissipation and enstrophy are spatially coherent in physical space as the resolution is coarsened, although these distances remain a constant number of grid points, suggesting that the data follow the applied filter. This reduction of intermittency is also observed in the eigenvalues of the strain-rate tensor as spatial resolution is reduced. The quantity with which these eigenvalues is normalised is shown to be extremely important as fine-scale quantities, such as the Kolmogorov length scale, are showed to change with different spatial resolution. This leads to a slight change in the modal values for these eigenvalues when normalised by the local Kolmogorov scale, which is not observed when they are normalised by large-scale, resolution-independent quantities. The interaction between strain and rotation is examined by means of the joint probability density function (pdf) between the second and third invariants of the characteristic equation of the velocity gradient tensor, Q and R respectively and by the alignments between the eigenvectors of the strain-rate tensor and the vorticity vector. Gaussian noise is shown to increase the divergence error of a dataset and subsequently affect both the Q–R joint pdf and the magnitude of the alignment cosines. The experimental datasets are showed to behave qualitatively similarly to the numerical datasets to which Gaussian noise has been added, confirming the importance of understanding the limitations of coarsely resolved, noisy experimental data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

The effects of resolution and noise on kinematic features of fine-scale turbulence

Loading next page...
 
/lp/springer_journal/the-effects-of-resolution-and-noise-on-kinematic-features-of-fine-SF0BoMG0YS
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1159-2
Publisher site
See Article on Publisher Site

Abstract

The effect of spatial resolution and experimental noise on the kinematic fine-scale features in shear flow turbulence is investigated by means of comparing numerical and experimental data. A direct numerical simulation (DNS) of a nominally two-dimensional planar mixing layer is mean filtered onto a uniform Cartesian grid at four different, progressively coarser, spatial resolutions. Spatial gradients are then calculated using a simple second-order scheme that is commonly used in experimental studies in order to make direct comparisons between the numerical and previously obtained experimental data. As expected, consistent with other studies, it is found that reduction of spatial resolution greatly reduces the frequency of high magnitude velocity gradients and thereby reduces the intermittency of the scalar analogues to strain (dissipation) and rotation (enstrophy). There is also an increase in the distances over which dissipation and enstrophy are spatially coherent in physical space as the resolution is coarsened, although these distances remain a constant number of grid points, suggesting that the data follow the applied filter. This reduction of intermittency is also observed in the eigenvalues of the strain-rate tensor as spatial resolution is reduced. The quantity with which these eigenvalues is normalised is shown to be extremely important as fine-scale quantities, such as the Kolmogorov length scale, are showed to change with different spatial resolution. This leads to a slight change in the modal values for these eigenvalues when normalised by the local Kolmogorov scale, which is not observed when they are normalised by large-scale, resolution-independent quantities. The interaction between strain and rotation is examined by means of the joint probability density function (pdf) between the second and third invariants of the characteristic equation of the velocity gradient tensor, Q and R respectively and by the alignments between the eigenvectors of the strain-rate tensor and the vorticity vector. Gaussian noise is shown to increase the divergence error of a dataset and subsequently affect both the Q–R joint pdf and the magnitude of the alignment cosines. The experimental datasets are showed to behave qualitatively similarly to the numerical datasets to which Gaussian noise has been added, confirming the importance of understanding the limitations of coarsely resolved, noisy experimental data.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 14, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off