The effects of magnetic field and hydrogen-like impurity on RbCl quantum pseudodot qubit

The effects of magnetic field and hydrogen-like impurity on RbCl quantum pseudodot qubit By using a variational method of Pekar type, we investigate the effects of the hydrogen-like impurity and magnetic field on the electron’s probability density (PD) and oscillating frequency (OF) of a RbCl quantum pseudodot qubit. Numerical results indicate that (1) the PD oscillates periodically; (2) the crest of the PD will decrease with increasing the cyclotron frequencies and the Coulombic impurity potential strength; (3) as the cyclotron frequency of the magnetic field and the strength of the Coulombic impurity potential increases, PD’s peaks will occur more frequently; (4) besides, Figs. 1b and 2b clearly show that in a single period the PD will decrease with increasing the cyclotron frequency and the Coulombic impurity potential strength when $$ t > 1.8\;\text{fs} $$ t > 1.8 fs ; whereas the changing law is just the opposite when $$ t < 1.8\;\text{fs} $$ t < 1.8 fs ; (5) the OF is an aggrandizing function of the strength of the Coulombic impurity potential, whereas it is a decaying one of the cyclotron frequencies of the magnetic field. The coherence of qubit is crucial to the investigations of quantum information and quantum computation, where the electron’s PD, the OF and the coherence time are the physical quantities representing the properties of coherence. Our research results fine that by changing the cyclotron frequency of the magnetic field and the strength of the Coulombic impurity potential one can adjust the electron’s PD and the OF.[Figure not available: see fulltext.][Figure not available: see fulltext.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Optical and Quantum Electronics Springer Journals

The effects of magnetic field and hydrogen-like impurity on RbCl quantum pseudodot qubit

Loading next page...
 
/lp/springer_journal/the-effects-of-magnetic-field-and-hydrogen-like-impurity-on-rbcl-2KgeW15Rqu
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Physics; Optics, Lasers, Photonics, Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks
ISSN
0306-8919
eISSN
1572-817X
D.O.I.
10.1007/s11082-017-1146-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial