The effects of magnetic field and hydrogen-like impurity on RbCl quantum pseudodot qubit

The effects of magnetic field and hydrogen-like impurity on RbCl quantum pseudodot qubit By using a variational method of Pekar type, we investigate the effects of the hydrogen-like impurity and magnetic field on the electron’s probability density (PD) and oscillating frequency (OF) of a RbCl quantum pseudodot qubit. Numerical results indicate that (1) the PD oscillates periodically; (2) the crest of the PD will decrease with increasing the cyclotron frequencies and the Coulombic impurity potential strength; (3) as the cyclotron frequency of the magnetic field and the strength of the Coulombic impurity potential increases, PD’s peaks will occur more frequently; (4) besides, Figs. 1b and 2b clearly show that in a single period the PD will decrease with increasing the cyclotron frequency and the Coulombic impurity potential strength when $$ t > 1.8\;\text{fs} $$ t > 1.8 fs ; whereas the changing law is just the opposite when $$ t < 1.8\;\text{fs} $$ t < 1.8 fs ; (5) the OF is an aggrandizing function of the strength of the Coulombic impurity potential, whereas it is a decaying one of the cyclotron frequencies of the magnetic field. The coherence of qubit is crucial to the investigations of quantum information and quantum computation, where the electron’s PD, the OF and the coherence time are the physical quantities representing the properties of coherence. Our research results fine that by changing the cyclotron frequency of the magnetic field and the strength of the Coulombic impurity potential one can adjust the electron’s PD and the OF.[Figure not available: see fulltext.][Figure not available: see fulltext.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Optical and Quantum Electronics Springer Journals

The effects of magnetic field and hydrogen-like impurity on RbCl quantum pseudodot qubit

Loading next page...
 
/lp/springer_journal/the-effects-of-magnetic-field-and-hydrogen-like-impurity-on-rbcl-2KgeW15Rqu
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Physics; Optics, Lasers, Photonics, Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks
ISSN
0306-8919
eISSN
1572-817X
D.O.I.
10.1007/s11082-017-1146-9
Publisher site
See Article on Publisher Site

Abstract

By using a variational method of Pekar type, we investigate the effects of the hydrogen-like impurity and magnetic field on the electron’s probability density (PD) and oscillating frequency (OF) of a RbCl quantum pseudodot qubit. Numerical results indicate that (1) the PD oscillates periodically; (2) the crest of the PD will decrease with increasing the cyclotron frequencies and the Coulombic impurity potential strength; (3) as the cyclotron frequency of the magnetic field and the strength of the Coulombic impurity potential increases, PD’s peaks will occur more frequently; (4) besides, Figs. 1b and 2b clearly show that in a single period the PD will decrease with increasing the cyclotron frequency and the Coulombic impurity potential strength when $$ t > 1.8\;\text{fs} $$ t > 1.8 fs ; whereas the changing law is just the opposite when $$ t < 1.8\;\text{fs} $$ t < 1.8 fs ; (5) the OF is an aggrandizing function of the strength of the Coulombic impurity potential, whereas it is a decaying one of the cyclotron frequencies of the magnetic field. The coherence of qubit is crucial to the investigations of quantum information and quantum computation, where the electron’s PD, the OF and the coherence time are the physical quantities representing the properties of coherence. Our research results fine that by changing the cyclotron frequency of the magnetic field and the strength of the Coulombic impurity potential one can adjust the electron’s PD and the OF.[Figure not available: see fulltext.][Figure not available: see fulltext.]

Journal

Optical and Quantum ElectronicsSpringer Journals

Published: Aug 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off