The Effects of Interannual Rainfall Variability on Tree–Grass Composition Along Kalahari Rainfall Gradient

The Effects of Interannual Rainfall Variability on Tree–Grass Composition Along Kalahari... Precipitation variability has been predicted to increase in a global warmer climate, and is expected to greatly affect plant growth, interspecies interactions, plant community composition, and other ecosystem processes. Although previous studies have investigated the effect of intra-annual rainfall variability on plant growth and ecosystem dynamics, the impacts of interannual rainfall variability remain understudied. This paper uses satellite data and develops a new mechanistic model to investigate the response of tree–grass composition to increasing interannual rainfall variability in arid to sub-humid ecosystems along the Kalahari Transect in Southern Africa. Both satellite data and model results show that increasing interannual rainfall fluctuations favor deep-rooted trees over shallow-rooted grasses in drier environments (that is, mean annual rainfall, MAP < 900–1000 mm) but favor grasses over trees in wetter environments (that is, MAP > 900–1000 mm). Trees have a competitive advantage over grasses in dry environments because their generally deeper root systems allow them to have exclusive access to the increased deep soil water resources expected to occur in wet years as a result of the stronger interannual rainfall fluctuations. In relatively wet environments, grasses are favored because of their high growth rate that allows them to take advantage of the window of opportunity existing in years with above average precipitation and thus increase fire-induced tree mortality. Thus, under increasing interannual rainfall fluctuations both direct effects on soil water availability and indirect effects mediated by tree–grass interactions and fire dynamics are expected to play an important role in determining changes in plant community composition. Ecosystems Springer Journals

The Effects of Interannual Rainfall Variability on Tree–Grass Composition Along Kalahari Rainfall Gradient

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Life Sciences; Ecology; Plant Sciences; Zoology; Environmental Management; Geoecology/Natural Processes; Hydrology/Water Resources
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial