The Effects of H+-ATPase Activator and Inhibitors on Cell Growth in the Maize Root

The Effects of H+-ATPase Activator and Inhibitors on Cell Growth in the Maize Root We studied the effects of H+-ATPase activator fusicoccin (FC) and its inhibitors, sodium orthovanadate (Na3VO4) and diethylstilbestrol (DES), on the rate of proton secretion by root regions located at various distances from the root tip, the rate of root growth, the length of the fully-elongated root cells, the sizes of growth zones, the relative growth rate of cells along the root length, and the number of fully-elongated cells in the root length increment. FC (10−6 M) stimulated proton secretion by root segments and enhanced root growth due to the greater length of fully-elongated cells. DES (10−4 M) suppressed proton secretion and retarded root growth, decreased the length of fully-elongated cells, inhibited cell division, and slowed down cell transition to elongation by prolonging the life-span of cells in the meristem. Na3VO4 (10−3 and 10−4 M) exerted similar effects. FC, DES, and orthovanadate did not affect the ratio of the relative rate of cell growth in the elongation zone to that in meristem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The Effects of H+-ATPase Activator and Inhibitors on Cell Growth in the Maize Root

Loading next page...
 
/lp/springer_journal/the-effects-of-h-atpase-activator-and-inhibitors-on-cell-growth-in-the-FiLLB7udua
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0073-y
Publisher site
See Article on Publisher Site

Abstract

We studied the effects of H+-ATPase activator fusicoccin (FC) and its inhibitors, sodium orthovanadate (Na3VO4) and diethylstilbestrol (DES), on the rate of proton secretion by root regions located at various distances from the root tip, the rate of root growth, the length of the fully-elongated root cells, the sizes of growth zones, the relative growth rate of cells along the root length, and the number of fully-elongated cells in the root length increment. FC (10−6 M) stimulated proton secretion by root segments and enhanced root growth due to the greater length of fully-elongated cells. DES (10−4 M) suppressed proton secretion and retarded root growth, decreased the length of fully-elongated cells, inhibited cell division, and slowed down cell transition to elongation by prolonging the life-span of cells in the meristem. Na3VO4 (10−3 and 10−4 M) exerted similar effects. FC, DES, and orthovanadate did not affect the ratio of the relative rate of cell growth in the elongation zone to that in meristem.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 9, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off