The Effects of Flexion and Torsion on a Fluid Flow Through a Curved Pipe

The Effects of Flexion and Torsion on a Fluid Flow Through a Curved Pipe We consider an injection of incompressible viscous fluid in a curved pipe with a smooth central curve γ . The one-dimensional model is obtained via singular perturbation of the Navier—Stokes system as ɛ , the ratio between the cross-section area and the length of the pipe, tends to zero. An asymptotic expansion of the flow in powers of ɛ is computed. The first term in the expansion depends only on the tangential injection along the central curve γ of the pipe and the velocity as well as the pressure drop are in the tangential direction. The second term contains the effects of the curvature (flexion) of γ in the direction of the tangent while the effects of torsion appear in the direction of the normal and the binormal to γ . The boundary layers at the ends of the pipe are studied. The error estimate is proved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

The Effects of Flexion and Torsion on a Fluid Flow Through a Curved Pipe

Loading next page...
 
/lp/springer_journal/the-effects-of-flexion-and-torsion-on-a-fluid-flow-through-a-curved-AujNL4I298
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2001 Springer-Verlag New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-001-0021-y
Publisher site
See Article on Publisher Site

Abstract

We consider an injection of incompressible viscous fluid in a curved pipe with a smooth central curve γ . The one-dimensional model is obtained via singular perturbation of the Navier—Stokes system as ɛ , the ratio between the cross-section area and the length of the pipe, tends to zero. An asymptotic expansion of the flow in powers of ɛ is computed. The first term in the expansion depends only on the tangential injection along the central curve γ of the pipe and the velocity as well as the pressure drop are in the tangential direction. The second term contains the effects of the curvature (flexion) of γ in the direction of the tangent while the effects of torsion appear in the direction of the normal and the binormal to γ . The boundary layers at the ends of the pipe are studied. The error estimate is proved.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Jan 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off