The effects of egg position, egg mass size, substrate and biofouling on embryo mortality in the squid Sepioteuthis australis

The effects of egg position, egg mass size, substrate and biofouling on embryo mortality in the... Using a combination of laboratory and field investigations, this study examined embryo mortality in the southern calamary Sepioteuthis australis as a function of egg mass size, the substrate upon which the mass is attached, the position of the embryo within the mass, and the degree of biofouling. Egg mass size ranged from 2 to 1,241 egg strands, however most masses consisted of 200–299 strands. Small egg masses (<300 strands) were generally attached to soft-sediment vegetation (Amphibolis antarctica, Heterozostera tasmanica, Caulerpa sp.), whereas larger masses (>300 strands) were either securely attached to robust macroalgae holdfasts (Ecklonia sp., Marcocystis pyrifera, Sargassum sp.) or unattached. Rates of embryo mortality were highly variable ranging from 2 to 25%. Both laboratory and field results indicated a positive relationship between egg mass size and embryo mortality. Larger, unattached egg masses contained twice as many dead embryos than those securely attached to a substrate. Mortality rates were significantly affected by the embryos’ relative position within the mass and were highest in embryos located near the attachment point of the egg strand, within the interior of the mass, and in close contact with the substrate. This was attributed to the inability of the embryos to respire adequately and eliminate metabolic wastes. Biofouling did not strongly influence embryo mortality, but colonisation occurred in areas conducive to growth, photosynthesis, and respiration indicating ‘healthy’ regions within the mass. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

The effects of egg position, egg mass size, substrate and biofouling on embryo mortality in the squid Sepioteuthis australis

Loading next page...
 
/lp/springer_journal/the-effects-of-egg-position-egg-mass-size-substrate-and-biofouling-on-016cTZyERv
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-006-9023-9
Publisher site
See Article on Publisher Site

Abstract

Using a combination of laboratory and field investigations, this study examined embryo mortality in the southern calamary Sepioteuthis australis as a function of egg mass size, the substrate upon which the mass is attached, the position of the embryo within the mass, and the degree of biofouling. Egg mass size ranged from 2 to 1,241 egg strands, however most masses consisted of 200–299 strands. Small egg masses (<300 strands) were generally attached to soft-sediment vegetation (Amphibolis antarctica, Heterozostera tasmanica, Caulerpa sp.), whereas larger masses (>300 strands) were either securely attached to robust macroalgae holdfasts (Ecklonia sp., Marcocystis pyrifera, Sargassum sp.) or unattached. Rates of embryo mortality were highly variable ranging from 2 to 25%. Both laboratory and field results indicated a positive relationship between egg mass size and embryo mortality. Larger, unattached egg masses contained twice as many dead embryos than those securely attached to a substrate. Mortality rates were significantly affected by the embryos’ relative position within the mass and were highest in embryos located near the attachment point of the egg strand, within the interior of the mass, and in close contact with the substrate. This was attributed to the inability of the embryos to respire adequately and eliminate metabolic wastes. Biofouling did not strongly influence embryo mortality, but colonisation occurred in areas conducive to growth, photosynthesis, and respiration indicating ‘healthy’ regions within the mass.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Dec 29, 2006

References

  • Adaptions for cold water spawning in loliginid squid: Loligo gahi in Falkland waters
    Arkhipkin, AI; Laptikhovsky, VV; Middleton, DAJ

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off