The effects of copper and zinc on Spirulina platensis growth and heavy metal accumulation in its cells

The effects of copper and zinc on Spirulina platensis growth and heavy metal accumulation in its... The effects of copper and zinc on Spirulina platensis (Nordst.) Geitl. growth and the capability of this cyanobacterium for accumulation of these heavy metals (HMs) were studied. S. platensis tolerance to HMs was shown to depend on the culture growth phase. When copper was added during the lag phase, its lethal concentration was 5 mg/l, whereas 4 mg/l were lethal during the linear growth phase. Zinc concentration of 8.8 mg/l was lethal during the linear but not lag phase of growth. HM-treated S. platensis cells were capable for accumulation of tenfold more copper and zinc than control cells. Independently of Cu2+ content in the medium and of the growth phase, cell cultures accumulated the highest amount of this metal as soon as after 1 h, which may be partially determined by its primary sorption by cell-wall polysaccharides. A subsequent substantial decrease in the intracellular copper content occurred due to it secretion, which was evident from the increased metal concentration in the culturing medium. When zinc was added during the linear growth phase, similar pattern of its accumulation was observed: the highest content after 1 h and its subsequent decrease to the initial level. When the initial density of the culture was low and the cells had much time to adapt to HM, zinc accumulated during the entire linear growth phase, and thereafter the metal was secreted to the medium. The mechanisms of S. platensis tolerance to HM related to both their sorption by the cell walls and secretion of metal excess into the culturing medium and its conversion into the form inaccessible for the cells are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The effects of copper and zinc on Spirulina platensis growth and heavy metal accumulation in its cells

Loading next page...
 
/lp/springer_journal/the-effects-of-copper-and-zinc-on-spirulina-platensis-growth-and-heavy-sS1V0iO4fb
Publisher
Springer Journals
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0035-4
Publisher site
See Article on Publisher Site

Abstract

The effects of copper and zinc on Spirulina platensis (Nordst.) Geitl. growth and the capability of this cyanobacterium for accumulation of these heavy metals (HMs) were studied. S. platensis tolerance to HMs was shown to depend on the culture growth phase. When copper was added during the lag phase, its lethal concentration was 5 mg/l, whereas 4 mg/l were lethal during the linear growth phase. Zinc concentration of 8.8 mg/l was lethal during the linear but not lag phase of growth. HM-treated S. platensis cells were capable for accumulation of tenfold more copper and zinc than control cells. Independently of Cu2+ content in the medium and of the growth phase, cell cultures accumulated the highest amount of this metal as soon as after 1 h, which may be partially determined by its primary sorption by cell-wall polysaccharides. A subsequent substantial decrease in the intracellular copper content occurred due to it secretion, which was evident from the increased metal concentration in the culturing medium. When zinc was added during the linear growth phase, similar pattern of its accumulation was observed: the highest content after 1 h and its subsequent decrease to the initial level. When the initial density of the culture was low and the cells had much time to adapt to HM, zinc accumulated during the entire linear growth phase, and thereafter the metal was secreted to the medium. The mechanisms of S. platensis tolerance to HM related to both their sorption by the cell walls and secretion of metal excess into the culturing medium and its conversion into the form inaccessible for the cells are discussed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 7, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off