The effects of biochar and inorganic amendments on soil remediation in the presence of hyperaccumulator plant

The effects of biochar and inorganic amendments on soil remediation in the presence of... Industrialization advances have led to an increase soil contamination by heavy metals. Among different technologies, in situ stabilization of metals combined with revegetation attracted attention. Therefore, this study aimed at comparing effects of biochars [rice husk biochar (RHB), maple leaves biochar (MLB)] and common inorganic amendments [red mud (RM), and steel slag (SS)] at different rates (0.5, 1, and 2% w/w) on leaching, and phytoavailability of metals (assessed using mustard green “Brassica juncea”). Soil pH in treated soils significantly (p < 0.01) increased, with the optimal pH ranges for plant growth observed in biochar-treated soils. The leaching of Cd, Cu, Pb, and Zn through soil significantly (p < 0.05) decreased in treated soils. Plant uptake and accumulation of Cd, Cu, Pb, and Zn decreased by 79–66, 13–19, 87–86, and 37–36% in RHB- and MLB-treated soils, respectively. Sequential extraction analysis pointed out that the major stabilization mechanism for metals using biochars involved the formation of organic and carbonate bonds, while for RM and SS was believed to involve the formation of inner sphere complexes with Fe/Al (hydr)oxides. The plant available fractions for Cd were generally higher than those for others. Overall, high dosage addition (2%) of each amendment offered the best compromise as it successfully reduced both leaching and phytoavailability of metals. Using MLB for the first time, showed promising results to immobilize metals with an increase in plant biomass. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy and Environmental Engineering Springer Journals

The effects of biochar and inorganic amendments on soil remediation in the presence of hyperaccumulator plant

Loading next page...
 
/lp/springer_journal/the-effects-of-biochar-and-inorganic-amendments-on-soil-remediation-in-K2wfXBqBpZ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Renewable and Green Energy
ISSN
2008-9163
eISSN
2251-6832
D.O.I.
10.1007/s40095-017-0250-8
Publisher site
See Article on Publisher Site

Abstract

Industrialization advances have led to an increase soil contamination by heavy metals. Among different technologies, in situ stabilization of metals combined with revegetation attracted attention. Therefore, this study aimed at comparing effects of biochars [rice husk biochar (RHB), maple leaves biochar (MLB)] and common inorganic amendments [red mud (RM), and steel slag (SS)] at different rates (0.5, 1, and 2% w/w) on leaching, and phytoavailability of metals (assessed using mustard green “Brassica juncea”). Soil pH in treated soils significantly (p < 0.01) increased, with the optimal pH ranges for plant growth observed in biochar-treated soils. The leaching of Cd, Cu, Pb, and Zn through soil significantly (p < 0.05) decreased in treated soils. Plant uptake and accumulation of Cd, Cu, Pb, and Zn decreased by 79–66, 13–19, 87–86, and 37–36% in RHB- and MLB-treated soils, respectively. Sequential extraction analysis pointed out that the major stabilization mechanism for metals using biochars involved the formation of organic and carbonate bonds, while for RM and SS was believed to involve the formation of inner sphere complexes with Fe/Al (hydr)oxides. The plant available fractions for Cd were generally higher than those for others. Overall, high dosage addition (2%) of each amendment offered the best compromise as it successfully reduced both leaching and phytoavailability of metals. Using MLB for the first time, showed promising results to immobilize metals with an increase in plant biomass.

Journal

International Journal of Energy and Environmental EngineeringSpringer Journals

Published: Oct 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off