The Effect of Wall Normal Actuation on a Turbulent Boundary Layer

The Effect of Wall Normal Actuation on a Turbulent Boundary Layer In this work, a series of direct numerical simulations are conducted to study the effect of wall normal spanwise homogeneous wall actuation on a turbulent boundary layer. The moving boundary is represented by a boundary data immersion technique. A parametric study was performed, varying the actuator length, the wall normal actuation amplitude and the actuation frequency. It was found that localized actuation, relying only on wall motion instead of requiring a plenum in the case of synthetic jets, generated a net momentum flux jet affecting the flow not only in the immediate vicinity of the actuator but also for a significant distance downstream. The cases with an actuator velocity of u act + = 20.1 $ u^{+}_{act}= 20.1 $ showed a particularly pronounced effect on the boundary layer and resulted in a recirculation region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Flow, Turbulence and Combustion" Springer Journals

The Effect of Wall Normal Actuation on a Turbulent Boundary Layer

Loading next page...
 
/lp/springer_journal/the-effect-of-wall-normal-actuation-on-a-turbulent-boundary-layer-SNw0WfrUCA
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer; Automotive Engineering
ISSN
1386-6184
eISSN
1573-1987
D.O.I.
10.1007/s10494-017-9868-0
Publisher site
See Article on Publisher Site

Abstract

In this work, a series of direct numerical simulations are conducted to study the effect of wall normal spanwise homogeneous wall actuation on a turbulent boundary layer. The moving boundary is represented by a boundary data immersion technique. A parametric study was performed, varying the actuator length, the wall normal actuation amplitude and the actuation frequency. It was found that localized actuation, relying only on wall motion instead of requiring a plenum in the case of synthetic jets, generated a net momentum flux jet affecting the flow not only in the immediate vicinity of the actuator but also for a significant distance downstream. The cases with an actuator velocity of u act + = 20.1 $ u^{+}_{act}= 20.1 $ showed a particularly pronounced effect on the boundary layer and resulted in a recirculation region.

Journal

"Flow, Turbulence and Combustion"Springer Journals

Published: Nov 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial