The Effect of Wall Normal Actuation on a Turbulent Boundary Layer

The Effect of Wall Normal Actuation on a Turbulent Boundary Layer In this work, a series of direct numerical simulations are conducted to study the effect of wall normal spanwise homogeneous wall actuation on a turbulent boundary layer. The moving boundary is represented by a boundary data immersion technique. A parametric study was performed, varying the actuator length, the wall normal actuation amplitude and the actuation frequency. It was found that localized actuation, relying only on wall motion instead of requiring a plenum in the case of synthetic jets, generated a net momentum flux jet affecting the flow not only in the immediate vicinity of the actuator but also for a significant distance downstream. The cases with an actuator velocity of u act + = 20.1 $ u^{+}_{act}= 20.1 $ showed a particularly pronounced effect on the boundary layer and resulted in a recirculation region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Flow, Turbulence and Combustion" Springer Journals

The Effect of Wall Normal Actuation on a Turbulent Boundary Layer

Loading next page...
 
/lp/springer_journal/the-effect-of-wall-normal-actuation-on-a-turbulent-boundary-layer-SNw0WfrUCA
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer; Automotive Engineering
ISSN
1386-6184
eISSN
1573-1987
D.O.I.
10.1007/s10494-017-9868-0
Publisher site
See Article on Publisher Site

Abstract

In this work, a series of direct numerical simulations are conducted to study the effect of wall normal spanwise homogeneous wall actuation on a turbulent boundary layer. The moving boundary is represented by a boundary data immersion technique. A parametric study was performed, varying the actuator length, the wall normal actuation amplitude and the actuation frequency. It was found that localized actuation, relying only on wall motion instead of requiring a plenum in the case of synthetic jets, generated a net momentum flux jet affecting the flow not only in the immediate vicinity of the actuator but also for a significant distance downstream. The cases with an actuator velocity of u act + = 20.1 $ u^{+}_{act}= 20.1 $ showed a particularly pronounced effect on the boundary layer and resulted in a recirculation region.

Journal

"Flow, Turbulence and Combustion"Springer Journals

Published: Nov 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off