The effect of thermal-neutron radiation on the decomposition of an oxygen solid solution in silicon

The effect of thermal-neutron radiation on the decomposition of an oxygen solid solution in silicon This paper presents the analysis of peculiarities of defect formation in the course of thermal treatment in silicon single crystals grown by the Czochralski method and exposed to thermal-neutron radiation, under the modes usually applied in transmutation doping of silicon ingots. The processes of defect formation were estimated using X-ray diffuse scattering and IR-spectroscopy. It is demonstrated that such doping results in the variation of the state in the material lattice of impurities such as oxygen and carbon. Moreover, subsequent high-temperature annealing leads to the recovery of concentration of interstitial oxygen and does not result in the recovery of the carbon concentration in the lattice nodes. The effect is studied of radiation on peculiar features of the formation of oxygen-containing microdefects in a silicon lattice at high-temperature annealing, used for the formation of an internal getter in silicon wafers. Russian Microelectronics Springer Journals

The effect of thermal-neutron radiation on the decomposition of an oxygen solid solution in silicon

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2011 by Pleiades Publishing, Ltd.
Engineering; Electrical Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial