The effect of the base composition and microstructure of nickel-zinc ferrites on the level of absorption of electromagnetic radiation

The effect of the base composition and microstructure of nickel-zinc ferrites on the level of... Promising absorbing materials include Ni—Zn ferrites, as they quite intensively absorb electromagnetic waves in the frequency range from 50 to 1000 MHz. The electromagnetic properties of Ni—Zn ferrite absorbing materials obtained by different technological methods were studied in this paper. A model making it possible to evaluate the dielectric permeability of the ferrite material, depending on the microstructure parameters and electrophysical properties of grain boundaries, was proposed. The influence of base composition and microstructure on the amount of absorption of electromagnetic radiation by Ni—Zn ferrite absorbing materials was determined. It was stated that the increase of the content of excess Fe2O3 to 51.0 mol % leads to the shift of the frequency range of the absorption of electromagnetic radiation towards lower frequencies. It can be explained by the increase of the dielectric and magnetic permeability of ferrite. Moreover, the introduction of an excess of Fe2O3 in the grinding stage of the synthesized burden is more efficient. It was revealed that increasing the sintering temperature to 1350°C also shifts the frequency range of absorption of electromagnetic radiation towards lower frequencies. Probably it is caused by the increase of the dielectric and magnetic permeability of ferrite and the shift of the resonance frequency of domain walls as a result of the formation of a coarse-grained structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

The effect of the base composition and microstructure of nickel-zinc ferrites on the level of absorption of electromagnetic radiation

Loading next page...
 
/lp/springer_journal/the-effect-of-the-base-composition-and-microstructure-of-nickel-zinc-llY3jVJWJF
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739716080035
Publisher site
See Article on Publisher Site

Abstract

Promising absorbing materials include Ni—Zn ferrites, as they quite intensively absorb electromagnetic waves in the frequency range from 50 to 1000 MHz. The electromagnetic properties of Ni—Zn ferrite absorbing materials obtained by different technological methods were studied in this paper. A model making it possible to evaluate the dielectric permeability of the ferrite material, depending on the microstructure parameters and electrophysical properties of grain boundaries, was proposed. The influence of base composition and microstructure on the amount of absorption of electromagnetic radiation by Ni—Zn ferrite absorbing materials was determined. It was stated that the increase of the content of excess Fe2O3 to 51.0 mol % leads to the shift of the frequency range of the absorption of electromagnetic radiation towards lower frequencies. It can be explained by the increase of the dielectric and magnetic permeability of ferrite. Moreover, the introduction of an excess of Fe2O3 in the grinding stage of the synthesized burden is more efficient. It was revealed that increasing the sintering temperature to 1350°C also shifts the frequency range of absorption of electromagnetic radiation towards lower frequencies. Probably it is caused by the increase of the dielectric and magnetic permeability of ferrite and the shift of the resonance frequency of domain walls as a result of the formation of a coarse-grained structure.

Journal

Russian MicroelectronicsSpringer Journals

Published: Mar 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off