The effect of temperature and magnetic field on a quantum rod qubit

The effect of temperature and magnetic field on a quantum rod qubit The Hamiltonian of a quantum rod (QR) with an ellipsoidal boundary is given after a coordinate transformation, which changes the ellipsoidal boundary into a spherical one. We obtain the eigenenergies and eigenfunctions of the ground and the first excited states of an electron, which is strongly coupled to the LO-phonon in a QR under an applied magnetic field by using the Pekar variational method. This system in QR may be employed as a two-level qubit. When the electron is in the superposition state of the ground and the first-excited states, we study the time evolution of the electron probability density. The relations of the probability density of electron on the temperature and the relations of the period of oscillation on the temperature and the cyclotron frequency of magnetic field are taken into consideration. The results show that the probability density of the electron oscillates in the QR with a oscillation period. It is found that the electron probability density and the oscillation period increase (decrease) with increasing temperature in lower (higher) temperature regime. The electron probability density increases (decreases) with increasing cyclotron frequency when the temperature is lower (higher). The oscillation period decreases with the increase of the cyclotron frequency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

The effect of temperature and magnetic field on a quantum rod qubit

Loading next page...
 
/lp/springer_journal/the-effect-of-temperature-and-magnetic-field-on-a-quantum-rod-qubit-0qIFdfeEWA
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0436-1
Publisher site
See Article on Publisher Site

Abstract

The Hamiltonian of a quantum rod (QR) with an ellipsoidal boundary is given after a coordinate transformation, which changes the ellipsoidal boundary into a spherical one. We obtain the eigenenergies and eigenfunctions of the ground and the first excited states of an electron, which is strongly coupled to the LO-phonon in a QR under an applied magnetic field by using the Pekar variational method. This system in QR may be employed as a two-level qubit. When the electron is in the superposition state of the ground and the first-excited states, we study the time evolution of the electron probability density. The relations of the probability density of electron on the temperature and the relations of the period of oscillation on the temperature and the cyclotron frequency of magnetic field are taken into consideration. The results show that the probability density of the electron oscillates in the QR with a oscillation period. It is found that the electron probability density and the oscillation period increase (decrease) with increasing temperature in lower (higher) temperature regime. The electron probability density increases (decreases) with increasing cyclotron frequency when the temperature is lower (higher). The oscillation period decreases with the increase of the cyclotron frequency.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jul 3, 2012

References

  • Spin-polarized transport through an Aharonov-Bohm interferometer with Rashba spin-orbit interaction
    Chi, F.; Li, S.S.
  • InAs/GaAs single-electron quantum dot qubit
    Li, S.S.; Xia, J.B.; Liu, J.L.; Yang, F.H.; Niu, Z.C.; Feng, S.L.; Zheng, H.Z.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off