The Effect of Sodium Azide on Basic and Induced Thermotolerance in Saccharomyces cerevisiae

The Effect of Sodium Azide on Basic and Induced Thermotolerance in Saccharomyces cerevisiae The action mechanism of the mitochondrial inhibitor sodium azide on thermotolerance in Saccharomyces cerevisiae was studied. At ambient growth temperature, pretreatment with sodium azide was shown to improve the thermotolerance of parent cells and the hsp104 mutant. Treating with the inhibitor during a mild heat shock suppressed the development of induced thermotolerance due to the inhibition of heat shock protein (Hsp104) synthesis. Treating with the inhibitor immediately before lethal heat shock produced a variety of effects on thermotolerance depending on whether the yeast metabolism was oxidative or fermentative. The conclusions are: (1) the protective effect of sodium azide on the thermotolerance of S. cerevisiae cells grown on glucose-containing medium is not related to Hsp104 functioning, and (2) the mechanisms of basic and induced thermotolerance differ considerably. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The Effect of Sodium Azide on Basic and Induced Thermotolerance in Saccharomyces cerevisiae

Loading next page...
 
/lp/springer_journal/the-effect-of-sodium-azide-on-basic-and-induced-thermotolerance-in-UWffTBJbH1
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000019214.68645.b6
Publisher site
See Article on Publisher Site

Abstract

The action mechanism of the mitochondrial inhibitor sodium azide on thermotolerance in Saccharomyces cerevisiae was studied. At ambient growth temperature, pretreatment with sodium azide was shown to improve the thermotolerance of parent cells and the hsp104 mutant. Treating with the inhibitor during a mild heat shock suppressed the development of induced thermotolerance due to the inhibition of heat shock protein (Hsp104) synthesis. Treating with the inhibitor immediately before lethal heat shock produced a variety of effects on thermotolerance depending on whether the yeast metabolism was oxidative or fermentative. The conclusions are: (1) the protective effect of sodium azide on the thermotolerance of S. cerevisiae cells grown on glucose-containing medium is not related to Hsp104 functioning, and (2) the mechanisms of basic and induced thermotolerance differ considerably.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off