The effect of sintering conditions on the properties of WC–10wt%Co PIM compacts

The effect of sintering conditions on the properties of WC–10wt%Co PIM compacts The powder injection molding (PIM) process has an advantage of near net shaping of homogeneous micro structure and density at the complicate form. This study was investigated for microstructure and mechanical properties of WC–10%Co insert tool alloy fabricated by PIM process. The WC–10%Co feedstock mixed with wax binder was fabricated by two blade mixer. After WC–10%Co feedstocks were injection molded, debinding process was carried by two-steps methods with solvent extraction and thermal debinding. The binder was eliminated with normal hexane for 12 h at 50 °C by solvent extraction, and subsequently thermal debinding was examined for 1 h at the temperature 900 °C. After debinding process, the specimens were sintered at vacuum or N2/H2 mixed gas atmosphere at 1380 °C. The microstructure and phase were observed by FE-SEM. In the case of sintered at 1380 °C in vacuum atmosphere, the hardness was 1600 Hv, and the relative density of WC–10%Co was 92.5%. The density of WC–10%Co sintered at 1380 °C in mixed gas atmosphere was 87.5% and the hardness was lower than 1400 Hv. Residual carbon contents of sintered at vacuum and mixed gas atmosphere were 5.4 wt%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

The effect of sintering conditions on the properties of WC–10wt%Co PIM compacts

Loading next page...
 
/lp/springer_journal/the-effect-of-sintering-conditions-on-the-properties-of-wc-10wt-co-pim-dT2b90B0QH
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0176-8
Publisher site
See Article on Publisher Site

Abstract

The powder injection molding (PIM) process has an advantage of near net shaping of homogeneous micro structure and density at the complicate form. This study was investigated for microstructure and mechanical properties of WC–10%Co insert tool alloy fabricated by PIM process. The WC–10%Co feedstock mixed with wax binder was fabricated by two blade mixer. After WC–10%Co feedstocks were injection molded, debinding process was carried by two-steps methods with solvent extraction and thermal debinding. The binder was eliminated with normal hexane for 12 h at 50 °C by solvent extraction, and subsequently thermal debinding was examined for 1 h at the temperature 900 °C. After debinding process, the specimens were sintered at vacuum or N2/H2 mixed gas atmosphere at 1380 °C. The microstructure and phase were observed by FE-SEM. In the case of sintered at 1380 °C in vacuum atmosphere, the hardness was 1600 Hv, and the relative density of WC–10%Co was 92.5%. The density of WC–10%Co sintered at 1380 °C in mixed gas atmosphere was 87.5% and the hardness was lower than 1400 Hv. Residual carbon contents of sintered at vacuum and mixed gas atmosphere were 5.4 wt%.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 5, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off