The Effect of Reproduction Biotopes on the Genetic Differentiation of Populations of Sockeye Salmon Oncorhynchus nerka

The Effect of Reproduction Biotopes on the Genetic Differentiation of Populations of Sockeye... Variation of mitochondrial DNA (mtDNA) was examined in nine populations from three lake-river systems of Chukotka and Kamchatka. Significant differences were found between most of the sockeye salmon samples studied. The genetic differences among populations were not high and often did not correlate with the geographical distances between them. The low population divergence is explained by a short time of existence of most of them, having been formed after the recession of the upper Pleistocene glacier. When the populations were grouped according to their spawning biotopes (river or lake), they in general appeared more genetically similar than upon their grouping by geographical location (the lake-river systems). The differences between the river and lake populations in the lake-river systems increased from north to south. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The Effect of Reproduction Biotopes on the Genetic Differentiation of Populations of Sockeye Salmon Oncorhynchus nerka

Loading next page...
 
/lp/springer_journal/the-effect-of-reproduction-biotopes-on-the-genetic-differentiation-of-0c09vzLnpu
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics; Microbial Genetics and Genomics; Animal Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1007/s11177-005-0119-4
Publisher site
See Article on Publisher Site

Abstract

Variation of mitochondrial DNA (mtDNA) was examined in nine populations from three lake-river systems of Chukotka and Kamchatka. Significant differences were found between most of the sockeye salmon samples studied. The genetic differences among populations were not high and often did not correlate with the geographical distances between them. The low population divergence is explained by a short time of existence of most of them, having been formed after the recession of the upper Pleistocene glacier. When the populations were grouped according to their spawning biotopes (river or lake), they in general appeared more genetically similar than upon their grouping by geographical location (the lake-river systems). The differences between the river and lake populations in the lake-river systems increased from north to south.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jun 22, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off