The Effect of Rapid Temperature Increase on the Growth Rate of Wheat Leaves

The Effect of Rapid Temperature Increase on the Growth Rate of Wheat Leaves The growth rate of the first leaf of eight-day-old wheat plants was measured using a DLT-2 highly sensitive linear displacement transducer. Leaf extensibility was evaluated from the growth rate under the increase in the pulling force by 2 g. An increase in the air temperature resulted in the doubling of the transpiration rate and immediate slowing of the leaf growth followed by the leaf shrinkage. However, growth was later resumed almost completely. Heat treatment did not induce any changes in the leaf extensibility, indicating that cell-wall mechanical properties were not changed. Growth retardation was supposed to result from a decrease in the water content in the leaf tissues because the balance between water influx from roots and its loss through transpiration was shifted toward the water loss. An initial drop in the relative water content (RWC) indicates such a misbalance. Subsequent growth resumption coincided with a decreased water deficiency. Since the rate of transpiration was not reduced, RWC and growth rate restoring evidently occurred due to the activated water uptake by roots, which can be explained by the increased hydraulic permeability detected in our experiments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The Effect of Rapid Temperature Increase on the Growth Rate of Wheat Leaves

Loading next page...
 
/lp/springer_journal/the-effect-of-rapid-temperature-increase-on-the-growth-rate-of-wheat-fn2LDRy3WM
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1022981432593
Publisher site
See Article on Publisher Site

Abstract

The growth rate of the first leaf of eight-day-old wheat plants was measured using a DLT-2 highly sensitive linear displacement transducer. Leaf extensibility was evaluated from the growth rate under the increase in the pulling force by 2 g. An increase in the air temperature resulted in the doubling of the transpiration rate and immediate slowing of the leaf growth followed by the leaf shrinkage. However, growth was later resumed almost completely. Heat treatment did not induce any changes in the leaf extensibility, indicating that cell-wall mechanical properties were not changed. Growth retardation was supposed to result from a decrease in the water content in the leaf tissues because the balance between water influx from roots and its loss through transpiration was shifted toward the water loss. An initial drop in the relative water content (RWC) indicates such a misbalance. Subsequent growth resumption coincided with a decreased water deficiency. Since the rate of transpiration was not reduced, RWC and growth rate restoring evidently occurred due to the activated water uptake by roots, which can be explained by the increased hydraulic permeability detected in our experiments.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off