The effect of process and geometric parameters on longitudinal edge strain and product defects in cold roll forming

The effect of process and geometric parameters on longitudinal edge strain and product defects in... Roll forming has been used traditionally in the construction and housing industry for the production of longitudinal components but is now increasingly applied in the automotive industry for the manufacture of structural and crash components from ultra high-strength steel (UHSS); the incremental nature of this process allows these hard-to-form materials to be shaped with higher efficiency and less shape defects than observed in common sheet forming processes such as stamping. Tight dimensional tolerances are imposed on automotive components, and this can lead to problems when roll forming UHSS where the high material strength results in shape defect and forming problems. Recent work has therefore increasingly focused on developing process monitoring and control routines for roll forming to improve process robustness and part quality. In roll forming, the longitudinal edge strain is considered to be related to product defects such as bow, twist and end flare. Process and part shape parameters have been shown to significantly influence peak longitudinal edge strain, and the link between process and product parameters, longitudinal edge strain and shape defects needs to be understood for the roll forming of UHSS if routines for process monitoring and control are to be established. Previous studies were mainly focused on traditional roll forming materials used for building products and the like. In this paper, the effect of process and part shape parameters on the peak longitudinal edge strain, longitudinal bow and springback is experimentally and statistically investigated for three different advanced high-strength steel (AHSS) and UHSS commonly used in automotive manufacturing. The results show that there are significant differences in behaviour when forming UHSS and that forming trends differ from those reported for softer steel grades. The experimental data presented in this paper should contribute to the further development of advanced process monitoring and part shape quality control routines in the roll forming AHSS and UHSS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

The effect of process and geometric parameters on longitudinal edge strain and product defects in cold roll forming

Loading next page...
 
/lp/springer_journal/the-effect-of-process-and-geometric-parameters-on-longitudinal-edge-fcctf60Slg
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0164-x
Publisher site
See Article on Publisher Site

Abstract

Roll forming has been used traditionally in the construction and housing industry for the production of longitudinal components but is now increasingly applied in the automotive industry for the manufacture of structural and crash components from ultra high-strength steel (UHSS); the incremental nature of this process allows these hard-to-form materials to be shaped with higher efficiency and less shape defects than observed in common sheet forming processes such as stamping. Tight dimensional tolerances are imposed on automotive components, and this can lead to problems when roll forming UHSS where the high material strength results in shape defect and forming problems. Recent work has therefore increasingly focused on developing process monitoring and control routines for roll forming to improve process robustness and part quality. In roll forming, the longitudinal edge strain is considered to be related to product defects such as bow, twist and end flare. Process and part shape parameters have been shown to significantly influence peak longitudinal edge strain, and the link between process and product parameters, longitudinal edge strain and shape defects needs to be understood for the roll forming of UHSS if routines for process monitoring and control are to be established. Previous studies were mainly focused on traditional roll forming materials used for building products and the like. In this paper, the effect of process and part shape parameters on the peak longitudinal edge strain, longitudinal bow and springback is experimentally and statistically investigated for three different advanced high-strength steel (AHSS) and UHSS commonly used in automotive manufacturing. The results show that there are significant differences in behaviour when forming UHSS and that forming trends differ from those reported for softer steel grades. The experimental data presented in this paper should contribute to the further development of advanced process monitoring and part shape quality control routines in the roll forming AHSS and UHSS.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off