The effect of potato plant transformation with the gene encoding Δ12-acyl-lipid desaturase on the CO2 exchange and activities of antioxidant enzymes under hypothermia

The effect of potato plant transformation with the gene encoding Δ12-acyl-lipid desaturase on... The effects of potato (Solanum tuberosum L., cv. Desnitsa) plant transformation with the desA gene encoding Δ12-acyl-lipid desaturase from Synechocystis sp. PCC 6803 on the regulation of free-radical processes in relation to plant tolerance to hypothermia are considered. It was shown that the content of polyunsaturated fatty acids (PUFA) in transformed plants was higher than in wild-type ones. In particular, the content of linoleic acid in transformants was higher by 35% and the content of linolenic acid was by 41% higher than in untransformed plants. In addition, transformation induced an increase in the absolute content of C16-PUFA and on the whole resulted in a marked accumulation of membrane lipids. As judged from the values of the damage index and the ratio of photosynthesis to respiration in wild-type and transformed plants under cold treatment, these changes in lipid metabolism favored the protection of coupling membranes, thus preventing plants against free-radical oxidation under low-temperature stress. As a result, the intensity of oxidative stress in transformed plants was much lower than in wild-type ones, whereas antioxidant enzymes (superoxide dismutase, catalase, peroxidase) were not substantially activated under hypothermia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The effect of potato plant transformation with the gene encoding Δ12-acyl-lipid desaturase on the CO2 exchange and activities of antioxidant enzymes under hypothermia

Loading next page...
 
/lp/springer_journal/the-effect-of-potato-plant-transformation-with-the-gene-encoding-12-YOXj53iSAt
Publisher
Springer Journals
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443713020040
Publisher site
See Article on Publisher Site

Abstract

The effects of potato (Solanum tuberosum L., cv. Desnitsa) plant transformation with the desA gene encoding Δ12-acyl-lipid desaturase from Synechocystis sp. PCC 6803 on the regulation of free-radical processes in relation to plant tolerance to hypothermia are considered. It was shown that the content of polyunsaturated fatty acids (PUFA) in transformed plants was higher than in wild-type ones. In particular, the content of linoleic acid in transformants was higher by 35% and the content of linolenic acid was by 41% higher than in untransformed plants. In addition, transformation induced an increase in the absolute content of C16-PUFA and on the whole resulted in a marked accumulation of membrane lipids. As judged from the values of the damage index and the ratio of photosynthesis to respiration in wild-type and transformed plants under cold treatment, these changes in lipid metabolism favored the protection of coupling membranes, thus preventing plants against free-radical oxidation under low-temperature stress. As a result, the intensity of oxidative stress in transformed plants was much lower than in wild-type ones, whereas antioxidant enzymes (superoxide dismutase, catalase, peroxidase) were not substantially activated under hypothermia.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 22, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off