The Effect of Parental Genotypes of Rye Lines on the Development of Quantitative Traits in Primary Octoploid Triticale: Plant Height

The Effect of Parental Genotypes of Rye Lines on the Development of Quantitative Traits in... When breeding the primary spring octoploid triticale derived from crosses of various inbred rye lines to wheat Chinese Spring, the effects of the rye genotype and growth conditions on the plant height and proportion of the first, second, and final (pedicle) internodes to the entire stem length were studied. Two triticale groups were examined: homozygotes for the dominant (Ddw1) and recessive (ddw1) alleles of the gene responsible for short stem in rye. In the short stem triticale lines carrying the Ddw1 alleles, the plants were 20 cm shorter on average than those in the ddw1-carrying lines, and the distribution of the two triticale groups overlapped significantly. In both groups, the lines significantly differing in plant height could be differentiated, because of allelic diversity of the additional genes controlling this trait along with the Ddw gene. In most triticale lines, especially in theDdw1-carrying ones, the plant height was much reduced under unfavorable growth conditions. At the same time, a short-stem line was isolated, which is characterized by ecological plasticity, like the maternal wheat cultivar. In the triticale studied, the stem structure depended on the short-stem rye genotype. The two-year study showed that in the triticale carrying the dominant allele of this gene, the first internode is significantly extended, whereas the upper (pedicle) internode is reduced, which increases plant lodging resistance. The differences revealed between the rye lines as well as their effect on the quantitative triticale traits are discussed in view of a variant of the hybridological analysis, which had been previously proposed for identification and mapping of the correspondent rye genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The Effect of Parental Genotypes of Rye Lines on the Development of Quantitative Traits in Primary Octoploid Triticale: Plant Height

Loading next page...
 
/lp/springer_journal/the-effect-of-parental-genotypes-of-rye-lines-on-the-development-of-MSKFDXTT9q
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1022070810919
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial