The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts in the acidothermophilic microalga Galdieria sulphuraria

The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts... We studied the effect of nitrogen starvation on growth indices, vitality, ultrastructure, and the photosynthetic apparatus of unique acidothermophilic microalga Galdieria sulphuraria (Galdieri) Merola. Long-term nitrogen starvation ceased G. sulphuraria growth and cell division. During the first days of starvation, phycobiliproteins degraded first, then the content of chlorophyll and carotenoids decreased to trace amounts, chloroplast reduced, cell wall became thinner, and storage compounds accumulated. However, the cells were alive. A comparison with the effects of nitrogen starvation on other photosynthesizing organisms showed that suppression of cell division, reduction of the photosynthetic apparatus to some minimum, and accumulation of storage compounds are a universal response to this stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts in the acidothermophilic microalga Galdieria sulphuraria

Loading next page...
 
/lp/springer_journal/the-effect-of-nitrogen-starvation-on-the-ultrastructure-and-pigment-2bG0LgaZLR
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706020026
Publisher site
See Article on Publisher Site

Abstract

We studied the effect of nitrogen starvation on growth indices, vitality, ultrastructure, and the photosynthetic apparatus of unique acidothermophilic microalga Galdieria sulphuraria (Galdieri) Merola. Long-term nitrogen starvation ceased G. sulphuraria growth and cell division. During the first days of starvation, phycobiliproteins degraded first, then the content of chlorophyll and carotenoids decreased to trace amounts, chloroplast reduced, cell wall became thinner, and storage compounds accumulated. However, the cells were alive. A comparison with the effects of nitrogen starvation on other photosynthesizing organisms showed that suppression of cell division, reduction of the photosynthetic apparatus to some minimum, and accumulation of storage compounds are a universal response to this stress.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 24, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off