The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts in the acidothermophilic microalga Galdieria sulphuraria

The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts... We studied the effect of nitrogen starvation on growth indices, vitality, ultrastructure, and the photosynthetic apparatus of unique acidothermophilic microalga Galdieria sulphuraria (Galdieri) Merola. Long-term nitrogen starvation ceased G. sulphuraria growth and cell division. During the first days of starvation, phycobiliproteins degraded first, then the content of chlorophyll and carotenoids decreased to trace amounts, chloroplast reduced, cell wall became thinner, and storage compounds accumulated. However, the cells were alive. A comparison with the effects of nitrogen starvation on other photosynthesizing organisms showed that suppression of cell division, reduction of the photosynthetic apparatus to some minimum, and accumulation of storage compounds are a universal response to this stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts in the acidothermophilic microalga Galdieria sulphuraria

Loading next page...
 
/lp/springer_journal/the-effect-of-nitrogen-starvation-on-the-ultrastructure-and-pigment-2bG0LgaZLR
Publisher
Springer Journals
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706020026
Publisher site
See Article on Publisher Site

Abstract

We studied the effect of nitrogen starvation on growth indices, vitality, ultrastructure, and the photosynthetic apparatus of unique acidothermophilic microalga Galdieria sulphuraria (Galdieri) Merola. Long-term nitrogen starvation ceased G. sulphuraria growth and cell division. During the first days of starvation, phycobiliproteins degraded first, then the content of chlorophyll and carotenoids decreased to trace amounts, chloroplast reduced, cell wall became thinner, and storage compounds accumulated. However, the cells were alive. A comparison with the effects of nitrogen starvation on other photosynthesizing organisms showed that suppression of cell division, reduction of the photosynthetic apparatus to some minimum, and accumulation of storage compounds are a universal response to this stress.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 24, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off