The effect of MAR elements on variation in spatial and temporal regulation of transgene expression

The effect of MAR elements on variation in spatial and temporal regulation of transgene expression The level of transgene expression often differs among independent transformants. This is generally ascribed to different integration sites of the transgene into the plant genome in each independently obtained transformant (position effect). It has been shown that in tobacco transformants expressing, for example, a cauliflower mosaic virus (CaMV) 35S promoter-driven β-glucuronidase (GUS) reporter gene, these position-induced quantitative differences among individual transformants were reduced by the introduction of matrix-associated regions (MAR elements) on the T-DNA. We have previously shown by imaging of in planta firefly luciferase (luc) reporter gene activity that quantitative differences in transgene activity can be the result of either a variation in (1) level, (2) spatial distribution and/or (3) temporal regulation of transgene expression between independent transformants. It is not known which of these three different aspects of transgene expression is affected when the transgene is flanked by MAR elements. Here we have used the firefly luciferase reporter system to analyse the influence of MAR elements on the activity of a CaMV 35S-luc transgene in a population of independently transformed tobacco plants. Imaging of in planta LUC activity in these tobacco plant populations showed that the presence of MAR elements does not result in less variation in the average level of transgene expression between individual transformants. This result is different from that obtained previously with a 35S-GUS reporter gene flanked by MAR elements and reflects the differences in the stability of the LUC and GUS reporter proteins. Also the variation in spatial patterns of in vivo LUC activity is not reduced between independent transformants when the transgene is flanked by MAR elements. However, MAR elements do seem to affect the variation in temporal regulation of transgene expression between individual transformants. The potential effects of MAR elements on the variability of transgene expression and the relation to the stability of the (trans)gene product are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The effect of MAR elements on variation in spatial and temporal regulation of transgene expression

Loading next page...
 
/lp/springer_journal/the-effect-of-mar-elements-on-variation-in-spatial-and-temporal-AgbS0qNuHS
Publisher
Springer Journals
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1011840310436
Publisher site
See Article on Publisher Site

Abstract

The level of transgene expression often differs among independent transformants. This is generally ascribed to different integration sites of the transgene into the plant genome in each independently obtained transformant (position effect). It has been shown that in tobacco transformants expressing, for example, a cauliflower mosaic virus (CaMV) 35S promoter-driven β-glucuronidase (GUS) reporter gene, these position-induced quantitative differences among individual transformants were reduced by the introduction of matrix-associated regions (MAR elements) on the T-DNA. We have previously shown by imaging of in planta firefly luciferase (luc) reporter gene activity that quantitative differences in transgene activity can be the result of either a variation in (1) level, (2) spatial distribution and/or (3) temporal regulation of transgene expression between independent transformants. It is not known which of these three different aspects of transgene expression is affected when the transgene is flanked by MAR elements. Here we have used the firefly luciferase reporter system to analyse the influence of MAR elements on the activity of a CaMV 35S-luc transgene in a population of independently transformed tobacco plants. Imaging of in planta LUC activity in these tobacco plant populations showed that the presence of MAR elements does not result in less variation in the average level of transgene expression between individual transformants. This result is different from that obtained previously with a 35S-GUS reporter gene flanked by MAR elements and reflects the differences in the stability of the LUC and GUS reporter proteins. Also the variation in spatial patterns of in vivo LUC activity is not reduced between independent transformants when the transgene is flanked by MAR elements. However, MAR elements do seem to affect the variation in temporal regulation of transgene expression between individual transformants. The potential effects of MAR elements on the variability of transgene expression and the relation to the stability of the (trans)gene product are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off