The Effect of Heat Shock on the Capacity of Wheat Plants to Restore Their Photosynthetic Electron Transport after Photoinhibition or Repeated Heating

The Effect of Heat Shock on the Capacity of Wheat Plants to Restore Their Photosynthetic Electron... The shoots of 16-day-old spring wheat plants (Triticum aestivumL., cv. Albidum 29) were subjected to heat shock (HS) at 40, 41, or 43°C for 10 min. The activity of the Hill reaction in chloroplasts isolated immediately after HS was 83, 61, and 30% of the initial value, respectively. The activity of the Hill reaction was also estimated after plant return to the initial growth conditions for one day. It was completely restored after heating at 40°C and achieved 82 and 30–33% of the initial level after heating at 41 and 43°C, respectively. Thereafter, the shoots were heated repeatedly at 42, 43, or 43.5°C for 10 min, and the activity of the Hill reaction was measured immediately or one day after this heating. Immediately after the second heating, the activity decreased again as compared to its value before heating. The percent of inhibition of the Hill reaction was similar in the control plants not subjected to preliminary HS and HS-treated plants independently of the temperature used. However, after one-day growth under normal conditions, the activity of the Hill reaction was restored almost completely in HS-treated plants but not more than by 10% in the control plants. The conclusion is that different mechanisms underlie the development of the tolerance to HS and recovery. Some plants were tested for the effect of HS (40°C) on their tolerance to photoinhibition. The degree of the Hill reaction inhibition after plant exposure to the light of 65–75 klx for 3 h was essentially similar in detached leaves from the HS-treated and unheated plants and comprised about 40% of the activity before light stress. After the leaves were returned to the low-light conditions for 3 h, the Hill reaction was restored and attained about 75% of that before photoinhibition in both HS-treated and untreated plants. The lack of the HS-induced stimulation of the Hill reaction recovery after photoinhibition is evidently related to the fact that heating and excess light damage different sites of photosystem II, which implies the different pathways for the recovery of its functional activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The Effect of Heat Shock on the Capacity of Wheat Plants to Restore Their Photosynthetic Electron Transport after Photoinhibition or Repeated Heating

Loading next page...
 
/lp/springer_journal/the-effect-of-heat-shock-on-the-capacity-of-wheat-plants-to-restore-ope2GqUBD2
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1012564709996
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial