The effect of flow control on the wake dynamics of a rectangular bluff body in ground proximity

The effect of flow control on the wake dynamics of a rectangular bluff body in ground proximity The time-resolved flow field in the wake of a rectangular bluff body in ground proximity is examined through wind tunnel experiments. In addition to an extensive assessment of the baseline wake dynamics, the study also investigates the impact of passive (i.e., base flaps) and active (i.e., fluidic oscillators) flow control on the wake dynamics. The velocity field downstream of the model is acquired with a stereoscopic high-speed particle image velocimetry system at several streamwise and crosswise sections. Coherent wake structures are determined by conditional averaging, spectral analysis, and spectral proper orthogonal decomposition. The baseline flow field is dominated by a wake bi-stability that is characterized by a random shift between two stable wake states. The bi-stability is governed by the model’s aspect ratio and occurs in the vertical direction, because the model height is 1.35 times larger than its width. Higher frequency modes with less energy content as determined in the appropriate literature are identified and visualized. A coupling between these modes and the bi-stability is discussed. Flow control has a significant impact on the wake dynamics. When passive flow control is applied, the bi-stability of the wake is still present for a flap angle of $$20^\circ$$ 20 ∘ . The higher frequency modes are still detectable but weakened. The turbulence intensity is significantly reduced when the flow attaches to the base flaps and the bi-stability is inhibited. When active flow control is applied, the higher baseline frequencies are suppressed in addition to the absence of the bi-stability. Solely the dominant mode at a Strouhal number of about 0.08 remains present for all flow control configurations. This mode is attributed to an alternating shear layer oscillation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

The effect of flow control on the wake dynamics of a rectangular bluff body in ground proximity

The effect of flow control on the wake dynamics of a rectangular bluff body in ground proximity

The time-resolved flow field in the wake of a rectangular bluff body in ground proximity is examined through wind tunnel experiments. In addition to an extensive assessment of the baseline wake dynamics, the study also investigates the impact of passive (i.e., base flaps) and active (i.e., fluidic oscillators) flow control on the wake dynamics. The velocity field down- stream of the model is acquired with a stereoscopic high-speed particle image velocimetry system at several streamwise and crosswise sections. Coherent wake structures are determined by conditional averaging, spectral analysis, and spectral proper orthogonal decomposition. The baseline flow field is dominated by a wake bi-stability that is characterized by a random shift between two stable wake states. The bi-stability is governed by the model’s aspect ratio and occurs in the vertical direction, because the model height is 1.35 times larger than its width. Higher frequency modes with less energy content as determined in the appropriate literature are identified and visualized. A coupling between these modes and the bi-stability is discussed. Flow control has a significant impact on the wake dynamics. When passive flow control is applied, the bi-stability of the wake is still present for a a fl p angle of 20 . The higher frequency modes are still detectable but weakened. The turbulence intensity is significantly reduced when the flow attaches to the base flaps and the bi-stability is inhibited. When active flow control is applied, the higher baseline frequencies are suppressed in addition to the absence of the bi-stability. Solely the dominant mode at a Southral number of about 0.08 remains present for all flow control configurations. This mode is attributed to an alternating shear layer oscillation. 1 Introduction enabled a deeper insight into the turbulent wake that is responsible for the large drag of bluff bodies. Several recent The desire for reducing the aerodynamic drag of bluff bod-...
Loading next page...
 
/lp/springer_journal/the-effect-of-flow-control-on-the-wake-dynamics-of-a-rectangular-bluff-mOKQ7jw7yF
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-018-2560-x
Publisher site
See Article on Publisher Site

Abstract

The time-resolved flow field in the wake of a rectangular bluff body in ground proximity is examined through wind tunnel experiments. In addition to an extensive assessment of the baseline wake dynamics, the study also investigates the impact of passive (i.e., base flaps) and active (i.e., fluidic oscillators) flow control on the wake dynamics. The velocity field downstream of the model is acquired with a stereoscopic high-speed particle image velocimetry system at several streamwise and crosswise sections. Coherent wake structures are determined by conditional averaging, spectral analysis, and spectral proper orthogonal decomposition. The baseline flow field is dominated by a wake bi-stability that is characterized by a random shift between two stable wake states. The bi-stability is governed by the model’s aspect ratio and occurs in the vertical direction, because the model height is 1.35 times larger than its width. Higher frequency modes with less energy content as determined in the appropriate literature are identified and visualized. A coupling between these modes and the bi-stability is discussed. Flow control has a significant impact on the wake dynamics. When passive flow control is applied, the bi-stability of the wake is still present for a flap angle of $$20^\circ$$ 20 ∘ . The higher frequency modes are still detectable but weakened. The turbulence intensity is significantly reduced when the flow attaches to the base flaps and the bi-stability is inhibited. When active flow control is applied, the higher baseline frequencies are suppressed in addition to the absence of the bi-stability. Solely the dominant mode at a Strouhal number of about 0.08 remains present for all flow control configurations. This mode is attributed to an alternating shear layer oscillation.

Journal

Experiments in FluidsSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off