The Effect of Fatal Carbon Monoxide Poisoning on the Equilibria Between Cell Membranes and the Electrolyte Solution

The Effect of Fatal Carbon Monoxide Poisoning on the Equilibria Between Cell Membranes and the... The effect of fatal carbon monoxide poisoning on equilibria between cell membranes and surrounding ions was described using a theoretical four-equilibria model. The model was developed to obtain parameters characterizing the interactions between solution ions and erythrocyte or thrombocyte membrane surface. The parameters are the total surface concentrations of both acidic and basic groups C A, C B and their association constants with solution ions K AH, K BOH. These parameters were used to calculate the theoretical values of surface charge density. The model was validated by comparison of these values to experimental data, which were determined from the electrophoretic mobility measurements of the blood cells. The experimental and theoretical surface charge density values agree at pH 2–8, and at higher pH, the deviation was observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Effect of Fatal Carbon Monoxide Poisoning on the Equilibria Between Cell Membranes and the Electrolyte Solution

Loading next page...
 
/lp/springer_journal/the-effect-of-fatal-carbon-monoxide-poisoning-on-the-equilibria-90mwTinsL4
Publisher
Springer US
Copyright
Copyright © 2014 by The Author(s)
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-014-9753-x
Publisher site
See Article on Publisher Site

Abstract

The effect of fatal carbon monoxide poisoning on equilibria between cell membranes and surrounding ions was described using a theoretical four-equilibria model. The model was developed to obtain parameters characterizing the interactions between solution ions and erythrocyte or thrombocyte membrane surface. The parameters are the total surface concentrations of both acidic and basic groups C A, C B and their association constants with solution ions K AH, K BOH. These parameters were used to calculate the theoretical values of surface charge density. The model was validated by comparison of these values to experimental data, which were determined from the electrophoretic mobility measurements of the blood cells. The experimental and theoretical surface charge density values agree at pH 2–8, and at higher pH, the deviation was observed.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Nov 22, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off