The Effect of Electrochemical and Gas Phase Activation of High Surface Area Carbon Black Ketjen Black EC 600 DJ on Its Surface Composition, Electrochemical Capacitance, and Stability

The Effect of Electrochemical and Gas Phase Activation of High Surface Area Carbon Black Ketjen... The effect of electrochemical and gas-phase activation of high-surface-area carbon black Ketjen Black EC 600 DJ on its stability and electrochemical capacitance is studied. The electrochemical activation is carried out according to the “start–stop” protocol (1–1.5 V, 0.5 V/s). The stability of samples is assessed based on variation of their effective resistance (based on the results of cyclic voltammetry (CVA)) and electrochemical capacitance (based on CVA and galvanostatic data) with the cycle number. The changes in the texture and surface properties of activated samples are studied by the methods of nitrogen low-temperature adsorption and X-ray photoelectron spectroscopy. The gas-phase activation of high-surface-area carbon black Ketjen Black EС 600 DJ is shown to impair its stability, while the electrochemical oxidation of carbonblack samples leads to a considerable (two-fold) increase in their electrochemical capacitance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Electrochemistry Springer Journals

The Effect of Electrochemical and Gas Phase Activation of High Surface Area Carbon Black Ketjen Black EC 600 DJ on Its Surface Composition, Electrochemical Capacitance, and Stability

Loading next page...
 
/lp/springer_journal/the-effect-of-electrochemical-and-gas-phase-activation-of-high-surface-F5vp3dsj2a
Publisher
Pleiades Publishing
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Chemistry; Electrochemistry; Physical Chemistry
ISSN
1023-1935
eISSN
1608-3342
D.O.I.
10.1134/S102319351805004X
Publisher site
See Article on Publisher Site

Abstract

The effect of electrochemical and gas-phase activation of high-surface-area carbon black Ketjen Black EC 600 DJ on its stability and electrochemical capacitance is studied. The electrochemical activation is carried out according to the “start–stop” protocol (1–1.5 V, 0.5 V/s). The stability of samples is assessed based on variation of their effective resistance (based on the results of cyclic voltammetry (CVA)) and electrochemical capacitance (based on CVA and galvanostatic data) with the cycle number. The changes in the texture and surface properties of activated samples are studied by the methods of nitrogen low-temperature adsorption and X-ray photoelectron spectroscopy. The gas-phase activation of high-surface-area carbon black Ketjen Black EС 600 DJ is shown to impair its stability, while the electrochemical oxidation of carbonblack samples leads to a considerable (two-fold) increase in their electrochemical capacitance.

Journal

Russian Journal of ElectrochemistrySpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off